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ABSTRACT 

Pesticide contamination in streams poses a significant threat to aquatic ecosystems, as 
evidenced by impacts on macroinvertebrate communities. This study quantitatively 
evaluated whether pesticide effects over macroinvertebrate communities, indicated by the 
SPEARpesticides index, relates with chemical metrics based on risk quotients (RQs) and 
toxic units (TUs) using data from the Swiss National Surface Water Quality Monitoring 
Program. 
The SPEARpesticides index was evaluated alongside other bioindicators and related to 
chemical metrics derived from 3.5- and 14-days composite samples based on pesticide 
measurements. Our approach combined data aggregation, chemical metric selection and 
flexible statistical modeling to examine the explanatory power and stability of RQs and TUs 
as predictors in models across different sampling periods and temporal windows. 
Results showed that both RQs and TUs were negatively related with SPEARpesticides, 
confirming that higher pesticide pressure corresponds to declines in sensitive 
macroinvertebrate taxa. However, the strength and consistency of these associations 
varied: RQs achieved the highest explanatory power in linear models (R2=0.28) but lacked 
temporal stability, while TUs, particularly calculated from 3.5-days composites (acute 
approach), provided more consistent, though lower explanatory power (R2=0.17). 
Incorporating environmental parameters such as proportion of agricultural land use and 
flow velocity further improved model performance by up to (R2=0.60), underscoring the 
value of integrated, multi-factor approaches. Despite these advances, substantial 
unexplained variance persisted, especially at the extremes of the exposure gradient, 
reflecting the complexity of field conditions, data limitations, and the challenges of 
harmonizing and aligning chemical and biological monitoring. 
By integrating biological and chemical metrics, this research advances understanding of 
pesticide impacts on macroinvertebrate communities in Swiss streams and supports the 
ongoing refinement of ecological assessment and monitoring strategies for freshwater 
ecosystems. 
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RESUMEN 

La contaminación por pesticidas en ríos representa una amenaza significativa para los 
ecosistemas acuáticos, evidenciándose en impactos sobre comunidades de 
macroinvertebrados. Este estudio evaluó la relación de los efectos de los pesticidas sobre 
comunidades de macroinvertebrados, a través del índice SPEARpesticides, con métricas 
químicas como los cocientes de riesgo (RQs) y unidades tóxicas (TUs) utilizando bases 
de datos del Programa Nacional Suizo de Monitoreo de la Calidad del Agua Superficial. 
El índice SPEARpesticides se evaluó junto con otros bioindicadores y se relacionó con 
métricas químicas derivadas de muestras compuestas de 3.5 y 14 días basadas en 
concentraciones de pesticidas. La investigación combinó diferentes modelos estadísticos 
de regresión para explorar el poder explicativo y la estabilidad de los RQs y TUs como 
variables independientes en modelos a través de diferentes ventanas temporales. 
Los resultados mostraron que RQs y TUs se asociaron negativamente con 
SPEARpesticides, confirmando que una mayor exposición a pesticidas refiere a una 
disminución de la respuesta en el índice. Los RQs alcanzaron el mayor poder explicativo 
en modelos lineales (R2=0.28), pero carecieron de estabilidad a través de las ventanas 
temporales, mientras que los TUs calculados de muestras compuestas de 3.5 días 
mostraron asociaciones más consistentes pero con menor poder explicativo usando 
modelos generalizados (R2=0.17). Además, la incorporación de parámetros ambientales 
como la proporción de uso de suelo para agricultura y la velocidad del flujo mejoró el 
desempeño de los modelos hasta en un (R2=0.60). A pesar de ello, los modelos mostraron 
niveles de incertidumbre considerables, especialmente en los extremos del gradiente de 
exposición química, lo que refleja la complejidad de las condiciones reales, las limitaciones 
de los datos y los desafíos de armonizar el monitoreo químico y biológico. 
La integración de las bases de datos biológica y química en este estudio contribuye a un 
mejor entendimiento del impacto de los pesticidas sobre las comunidades de 
macroinvertebrados en ríos suizos y respalda la mejora continua de las estrategias de 
monitoreo y evaluación del riesgo ecológico en ecosistemas acuáticos. 
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1. INTRODUCTION 

1.1. General Background 

1.1.1. Aquatic ecosystem health and micropollutant contamination 

Aquatic ecosystems are critical to global biodiversity, providing essential services such as 
water purification, nutrient cycling, and habitat for a wide range of species (Albert et al., 
2021; Haase et al., 2023). However, these systems are increasingly threatened by 
anthropogenic pressures. By 2000, around 80% of the world’s population lived in regions 
where freshwater resources were at risk due to habitat destruction, eutrophication, 
excessive water extraction, and pollution (Vörösmarty et al., 2010). With an expected 26% 
increase in the world's population by 2050, the situation seems to become more 
complicated (FAO, 2021). 
Streams, as integral components of aquatic ecosystems, are particularly important due to 
their ecological roles and vulnerability to stressors. They support diverse communities, 
especially benthic macroinvertebrates, which are central to food web dynamics and 
nutrient cycling, and act as natural filters that break down organic matter and contaminants, 
functions especially vital in agricultural landscapes (Shah et al., 2020; Yeakley et al., 
2016). Streams and their riparian zones provide essential ecosystem services such as 
flood regulation, groundwater recharge, and water filtration, all of which contribute to 
environmental stability at both local and global scales. Additionally, these areas enhance 
ecosystem services by sequestering carbon, moderating temperatures, and buffering 
against extreme weather events (Vári et al., 2022; Yeakley et al., 2016). 
The health and integrity of stream ecosystems are shaped by interactions among physical, 
chemical, and biological factors, all of which are influenced by anthropogenic activities 
such as agriculture, urbanization, and industrial discharges (FAO, 2021; Rasmussen et al., 
2012). Streams are especially susceptible to chemical pollutants from nearby agricultural 
runoff and urban areas. Unlike larger water bodies, streams have limited dilution capacity, 
so pollutants can quickly reach ecologically harmful concentrations (Morin & Artigas, 
2023). 
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Of particular concern are micropollutants, a diverse group of chemical compounds 
including pesticides, pharmaceuticals, personal care products, and heavy metals  
(Ginebreda et al., 2014; Munz et al., 2017; Weisner et al., 2022). These contaminants are 
notable for their persistence, potential for bioaccumulation, and ability to cause chronic or 
sub-lethal effects on aquatic organisms and ecosystem processes (SETAC, 2018). For 
instance, endocrine disruptors can impair fish reproduction, while heavy metals and 
persistent organic chemical reduce biodiversity and alter food web dynamic, undermining 
ecosystem stability (Abbasi et al., 2022; Ginebreda et al., 2014). 
Research shows that micropollutant concentrations, such as those from wastewater 
treatment plants, can significantly affect vulnerable species like microorganisms and 
invertebrates, leading to changes in stream community structure (Burdon et al., 2019; 
Munz et al., 2017; Tlili et al., 2017). The combined effect of pollutants, habitat alteration, 
and climate change can further exacerbate impacts on aquatic organisms, emphasizing 
the need for integrated assessment and management strategies (Beyer et al., 2014; 
Ginebreda et al., 2014). 
Given the centrality of micropollutants in shaping stream ecosystem health, the following 
section focuses on anthropogenic pesticide pressures as a critical subset of these 
contaminants. 

1.1.2. Anthropogenic (pesticide) pressure and its consequences. 

Anthropogenic pressures on streams have intensified in recent decades, with pesticide 
contamination emerging as a particularly critical threat (FAO, 2021; Weisner et al., 2022). 
Pesticides reach aquatic environments through multiple pathways, including runoff from 
agricultural fields, leaching, and atmospheric deposition, as well as non-agricultural uses 
such as urban landscaping and public health applications (Beketov et al., 2013; Doppler 
et al., 2012, 2024). The presence of both agricultural and non-agricultural sources 
complicates regulatory efforts, as cumulative impacts are often underestimated when only 
individual inputs are considered. 
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Persistent pesticide residues are widely documented in small streams, posing significant 
risks even at low concentrations (Bai et al., 2018; Liess et al., 2021). Numerous studies 
have demonstrated negative correlations between pesticide concentrations and 
biodiversity, especially among sensitive aquatic invertebrates that serve as key 
bioindicators of ecosystem health (Beketov et al., 2013; Burdon et al., 2019; Ganatra et 
al., 2021). Both chronic and acute exposures to pesticides have been shown to impair 
freshwater ecosystems, resulting in the loss of sensitive species, and altered community 
structures (Kumar et al., 2023; Stehle & Schulz, 2015). 
The ecological consequences of pesticide contamination are multifaceted, encompassing 
both direct and indirect effects in streams. Direct effects manifest at the individual or 
species level, impairing physiological functions, reproduction, or survival, and leading to 
marked reductions in sensitive taxa such as aquatic invertebrates, key components of 
freshwater food webs (Beketov et al., 2013; Liess & von der Ohe, 2005). The loss of these 
species disrupts ecological balance, reduces biodiversity, and diminishes the resilience of 
aquatic systems to further stressors. Indirect effects operate at the community and 
ecosystem levels, manifesting as altered predation and competition, changes in nutrient 
cycling, and weakened trophic interactions due to the decline or loss of key taxa (Hou et 
al., 2025; Shah et al., 2020). 
Pesticide contamination can shift species composition and undermine ecosystem 
functions and integrity. In lowland streams, increased toxicity from pesticide runoff has 
been linked to significant reductions in species richness, with some studies reporting 
losses in taxa of up to 42% of the recorded taxonomic pools (Beketov et al., 2013). Notably, 
these adverse effects can occur at concentrations lower than those deemed "safe" by 
regulatory frameworks, highlighting critical gaps in current risk assessments that often 
focus on individual compounds rather than complex mixtures (Kienzler et al., 2016; 
Schriever et al., 2025). 
Moreover, the presence of pesticide mixtures in streams can produce synergistic 
toxicological effects, amplifying risks beyond those predicted by single-chemical 
assessments. Addressing these challenges requires robust monitoring and mitigation 
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strategies, as well as a nuanced understanding of ecological impacts. This often 
necessitates the integration of biological assessments with chemical analyses to delineate 
the effects of pesticides and other micropollutants on stream health (Bettinetti et al., 2020; 
Rico & Van den Brink, 2015). Ongoing research continues to refine models and indicators 
to better assess and manage the risks posed by these contaminants (Heß et al., 2024; 
Hunt et al., 2017). 

1.2. Bioindicators in ecological assessment. 

Biological communities are central to ecosystem health assessment because they provide 
an integrated measure of ecological status over time. Unlike chemical analyses, which 
offer a snapshot of contaminant levels, biological indicators can reflect the cumulative 
impacts of pollution, habitat alteration, and hydrological changes on aquatic systems (de 
Castro-Català et al., 2016). Among the most informative bioindicators are 
macroinvertebrates, fish and algae, whose varied sensitivities to environmental stressors 
make them reliable proxies for water quality and ecosystem resilience (Herman & 
Nejadhashemi, 2015; Tlili et al., 2017). 
Regulatory frameworks increasingly recognize the value of biological communities for 
water quality assessment. The European Union Water Framework Directive (EU WFD) 
mandates the use of biological quality elements, including macroinvertebrates, fish, and 
macrophytes, as part of its approach to achieving good ecological status in water bodies 
(EC, 2011). This directive emphasizes the integration of hydromorphological, chemical, 
and biological data to support adaptive management and restoration. Similarly, Swiss 
water protection laws recommend the use of bioindicators alongside chemical metrics to 
assess ecological integrity, reflecting a commitment to biodiversity conservation and 
comprehensive evaluation of anthropogenic pressures (BAFU, 2013; 
Gewässerschutzverordnung, GSchV, 1998). Through these frameworks, the demand for 
robust bioindicator systems and standardized methodologies has grown, supporting more 
effective ecosystem management (Espinar-Herranz et al., 2025; Heß et al., 2024). 
Biological indices in ecological studies generally fall into three categories: those describing 
basic community structure (e.g., species richness), those evaluating deviations from 
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reference conditions, and those targeting specific stressors (Khaliq et al., 2024). 
Macroinvertebrate-based assessments offer practical advantages: they are relatively easy 
to collect and identify, and they integrate the effects of both acute and chronic pollution as 
well as multiple environmental stressors over time (Ganatra et al., 2021; Hunt et al., 2017). 
This makes them useful for long-term monitoring and for detecting subtle ecological 
changes that chemical monitoring might miss. 

1.2.1. Overview of bioindicators used in this project: SPEARpesticides, IBCH and 
EPT. 

Macroinvertebrate-based bioindicators such as SPEARpesticides, the Swiss Biological 
Index (IBCH) with its VT (Diversity Class Index) and GI (Indicator Group Index) 
components, and the EPT richness are foundational tools in stream ecological 
assessment, each offering distinct advantages and facing specific challenges. The 
SPEARpesticides (SPEcies At Risk), index developed in Germany (Liess & von der Ohe, 
2005) is designed to evaluate the ecological impact of organic pollutants, particularly 
pesticides, on stream macroinvertebrate communities by identifying vulnerable species 
based on life-history traits and pesticide sensitivity. Its foundation lies in quantifying the 
proportion of “at risk” taxa within a community and linking observed declines to pesticide 
pressure, even in the presence of chemical mixtures (Beketov et al., 2013; Schäfer et al., 
2013; Wogram & Liess, 2001). The index has been widely applied in European and 
international contexts for stream monitoring and research, detecting subtle, community-
level impacts of pesticides and supporting water management strategies (Schäfer & Liess, 
2013). 
The IBCH (Indice Biologique Canton Helvétique or Swiss Biological Index) is Switzerland’s 
standardized macroinvertebrate-based index for evaluating stream health, with the VT 
measuring overall biodiversity and the GI focusing on the abundance of key indicator taxa. 
The IBCH, along with the VT and GI, is used to monitor temporal changes and compare 
ecological conditions across regions and stream types in Switzerland (BAFU, 2019, 2022). 
The EPT richness, based on the presence and abundance of Ephemeroptera, Plecoptera, 
and Trichoptera, is a widely used metric for evaluating stream health and water quality 
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worldwide (Suhaila & Che Salmah, 2017). Its sensitivity to various environmental stressors 
enables the detection and quantification of pollution severity, identification of contamination 
sources, and assessment of habitat quality (Haase et al., 2023; Khaliq et al., 2024). The 
EPT richness is often integrated with other indices to prioritize areas for conservation or 
restoration, but it should not be used alone in watercourses with naturally low EPT taxa 
richness, such as lowland rivers, large fine-substrate rivers, slow-flowing or stagnant water 
bodies, or urban streams, where pollution-tolerant groups dominate (Tubić et al., 2024); 
instead, a multimetric approach is recommended to assess potential confounding factors 
and improve the reliability and comprehensiveness of environmental evaluations (Poikane 
et al., 2016; Schuwirth et al., 2015). 
Despite their broad application and regulatory endorsement, the use of these 
macroinvertebrate indicators faces challenges when attempting to elucidate their 
relationship with chemical pressure alone due to multistressor reality. Community structure 
and indicator responses can be influenced by environmental factors such as hydrology, 
substrate quality, and physical habitat integrity, independently of chemical stressors 
(Robinson et al., 2014; Villeneuve et al., 2018). To address these complexities, 
researchers have employed advanced statistical models and multimetric approaches that 
account for multiple stressors, improving the reliability and interpretive power of the 
assessments (Liess et al., 2021; Tampo et al., 2021). However, careful consideration of 
confounding factors remains key to their effective use (Schuwirth et al., 2015). 
Case studies across Europe highlight the versatility and effectiveness of these indices in 
diverse ecological contexts, facilitating both local and international initiatives aimed at 
improving water quality and conserving aquatic ecosystems (Poikane et al., 2016, 2020).  

1.3. Chemical metrics: Risk Quotients (RQs) and Toxic Units (TUs). 

Risk Quotients (RQs) and Toxic Units (TUs) are foundational tools in aquatic risk 
assessment, enabling the evaluation of ecological risks posed by chemical substances in 
surface waters. RQs are typically calculated as the ratio of the measured or predicted 
environmental concentration (MEC or PEC) of a chemical to its predicted no-effect 
concentration (PNEC), typically derived from toxicity tests on aquatic organisms (Junghans 
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et al., 2013). An RQ greater than 1 indicates a potential risk to aquatic life and warrants 
further investigation or regulatory action. These metrics are integrated into regulatory 
frameworks, such as the EU WFD, to guide restrictions, bans or mitigation strategies and 
are applied for both acute and chronic exposure assessments (Moe et al., 2022; Peterson, 
2006). In Switzerland, RQs are also routinely used in national and cantonal water quality 
monitoring programs to identify priority pollutants and inform management actions 
(Junghans et al., 2013; Spycher et al., 2018). 
RQs are not limited to single substances; they can be extended to assess the combined 
risk of multiple chemicals by summing individual risk, a method known as summations or 
mixture approach (Backhaus & Faust, 2012; Wei et al., 2022). This approach is particularly 
relevant for evaluating mixture effects in environments where multiple contaminants co-
occur. 
TUs provide a standardized metric for assessing the risk posed by individual chemicals 
and mixtures in aquatic systems. A TU is calculated as the ratio of a chemical’s 
concentration in water to its effect concentration, commonly LC50 or EC50, with a TU value 
of 1 indicating that the environmental concentration matches the effect threshold for 50% 
of test organisms (von der Ohe & de Zwart, 2013) TUs are especially valuable for 
evaluating chemical mixtures, as the toxic unit summation method allows researchers to 
estimate the combined toxicity of complex contaminant mixtures (Backhaus & Faust, 2012; 
Ginebreda et al., 2014). Alternatively, the maximum toxicity approach, which uses the 
highest TU among mixture components, is particularly relevant in acute exposure 
scenarios (Hunt et al., 2017; Liess et al., 2021). 
Both RQs and TUs have been applied in a range of contexts, from large-scale, long-term 
monitoring to event-driven sampling following acute pollution episodes (Ganatra et al., 
2021; Hunt et al., 2017; Kienzler et al., 2019; Rasmussen et al., 2012). Their flexibility 
enables researchers and regulators to tailor risk assessments to specific environmental 
conditions and pollution profiles (Beyer et al., 2014; Švara et al., 2021). 
Despite their widespread use, RQs and TUs face some challenges. They often do not fully 
account for interactive, synergistic, or antagonistic effects within chemical mixtures, which 
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can result in under- or overestimation of chemical assessment (Backhaus & Faust, 2012; 
Spycher et al., 2018). Additionally, uncertainties in establishing accurate PNECs and effect 
concentrations, often based on laboratory-derived data, can affect the reliability of these 
metrics under field conditions (Junghans et al., 2011; Kienzler et al., 2019). To address 
these challenges, there is a growing emphasis of integrating site-specific ecological factors 
and combining chemical metrics with biological indices to enhance the validity and 
applicability of risk assessments (Bettinetti et al., 2020; Burdon et al., 2019; Lee et al., 
2020). 
As the next section will discuss, the integration of chemical metrics, such as RQs and TUs, 
with biological assessment tools has been identified as a critical step for comprehensively 
evaluating the complexity of ecological risks in aquatic ecosystems. 

1.4. Chemical-Biological data integration and study context. 

Integrating chemical and biological data is basic for a comprehensive assessment of 
stream health, particularly when evaluating the impacts of pesticides and other 
micropollutants. While chemical indicators, such as RQs and TUs, evaluate pollutant 
concentrations and provide valuable information on potential ecological risks, they do not 
directly capture the cumulative, chronic, or sublethal effects on aquatic communities. In 
contrast, biological indices, especially macroinvertebrate-based metrics like 
SPEARpesticides, IBCH, and EPT, reflect the combined effects of pollutants and offer a 
more nuanced perspective on ecosystem integrity. 
Due to differences in land use, hydrology, and natural gradients at the catchment level, 
streams are inherently variable in their chemical and biological profile. Integrating both 
chemical and biological data enables context-specific risk assessments that are sensitive 
to these local conditions, thereby improving the ecological relevance of monitoring and 
management strategies. Recent studies have integrated RQs and TUs with biological 
monitoring metrics to enhance the robustness of water quality assessments. For example, 
while indices like SPEARpesticides have shown negative correlations with chemical 
pressures assessed through Tus. However, the integration of both types of data remains 
important for further analysis, as biological responses reflect cumulative stressors and 
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recovery dynamics, while chemical metrics identify specific drives of impairment (Burdon 
et al., 2019; Liess et al., 2021). 
However, macroinvertebrate indices do not exclusively reflect chemical influences; 
environmental variables such as temperature, flow dynamics, and habitat complexity also 
play significant roles in shaping biological responses (Rico et al., 2016; Rico & Van den 
Brink, 2015). This complexity underscores the necessity for multi-faceted assessment 
frameworks that account for both chemical and non-chemical stressors (Haase et al., 
2023). Researchers have addressed these challenges by employing advanced 
experimental designs and statistical approaches to disentangle the effects of pollutants 
from other environmental factors (Epele et al., 2024; Rasmussen et al., 2012). Integrating 
chemical metrics with biological indices in event-driven and long-term monitoring studies 
provides critical insights into how multiple stressors interact to impact aquatic communities 
across spatial and temporal contexts. This helps us better understand environmental 
health and practice more informed management (Schriever et al., 2025). 
Within Switzerland, this integrated approach is operationalized through the Swiss National 
Surface Water Quality Monitoring Program (NAWA). NAWA includes periodic chemical 
sampling and analysis of various micropollutants, which are useful for calculating RQs. It 
also includes macroinvertebrate monitoring, the results of which are the main input for 
bioindicators such as IBCH and SPEARpesticides (BAFU, 2019). Recent Swiss studies 
have revealed connections between macroinvertebrate communities and ecomorphology, 
agricultural area in the catchment, catchment area, discharge, and insecticide application 
rates (Hutter et al., 2019; Ilg & Alther, 2024; Khaliq et al., 2024). Other studies have 
examined the importance of micropollutant pressure in streams using chemical metrics 
(Daouk et al., 2022; Doppler et al., 2024). Some studies have explicitly linked these 
biological indicators with chemical metrics (Burdon et al., 2016, 2019; Junghans et al., 
2019; Munz et al., 2017). However, no study has explored the long-term national datasets 
of micropollutants and macroinvertebrates together. 
Addressing this gap, the present research aims to use the SPEARpesticides index, 
alongside other bioindicators, to assess the status of Swiss streams with respect to 
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pesticide contamination. This assessment leverages the Swiss micropollutant database 
and macroinvertebrate monitoring data collected from 2018 to 2023, considering the 
characteristics of Swiss streams and the challenges identified in recent literature (Chow et 
al., 2020; Doppler et al., 2024; Spycher et al., 2018). The study adapts the concept of TUs 
to align with 14- and 3.5-days sampling periods, guiding the selection of ecotoxicological 
endpoints for risk metrics and enabling a direct comparison of the performance of RQs and 
TUs in explaining bioindicator responses. This research applies nationally representative 
data to evaluate the effects of pesticide mixtures on macroinvertebrate communities in 
Swiss watercourses by combining bioindicator analysis with chemical metrics. The findings 
aim to support ecological monitoring and inform risk management in Switzerland. 

2. OBJECTIVES AND HYPOTHESES 

2.1. Objectives 

2.1.1. General Objective 

The general objective of this work is to quantitatively evaluate the relationship between 
chemical metrics (risk quotients and toxic units based on pesticide concentrations) and 
SPEARpesticides, along other bioindicators, to evaluate how effectively these 
bioindicators reflect pesticides impacts on macroinvertebrate communities in Swiss 
streams, considering the characteristics of the NAWA monitoring framework. 

2.1.2. Specific Objectives 

- Evaluate the effectiveness of risk quotients and toxic units under acute (3.5-days 
samples) and chronic (14-days samples) approaches for explaining variations in 
macroinvertebrate-based bioindicators. 

- Investigate the influence of environmental parameters on the ability of risk quotients 
and toxic units to explain changes in macroinvertebrate-based bioindicators. 

- Assess the influence of sampling periods and temporal integration windows in the 
relationship between pesticide exposure and macroinvertebrate bioindicators. 
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2.2. Hypotheses 

2.2.1. General Hypothesis 

Elevated pesticide pressure, as quantified by higher RQ and TU values, will lead to a 
measurable decline in sensitive macroinvertebrate taxa, resulting in lower values of 
bioindicators such as SPEARpesticides. This decline is expected due to the direct toxic 
effects of pesticides on sensitive taxa and the indirect alteration of community structure. 

2.2.2. Specific Hypotheses 

- Chemical risk metrics (RQs and TUs), particularly when temporally aligned to biological 
sampling, will serve as robust predictors of variation of the stressor-related 
bioindicators, reflecting the linkage between chemical exposure and biological effect. 

- With appropriate harmonization and alignment of Swiss monitoring conditions, and 
accounting for key environmental variables, bioindicators more effectively capture the 
ecological impact of pesticide mixtures on macroinvertebrate communities than when 
only chemical metrics are used. 

- The strength of the relationship between chemical metrics and bioindicator responses 
will vary with the sampling period and time window, with acute (3.5-days samples) and 
shorter windows capturing episodic toxicity events to which sensitive indices like 
SPEARpesticides are more responsive, while chronic (14-days samples) and longer 
windows will reflect cumulative impacts, potentially resulting in less sensitive 
bioindicator responses. 

3. DATA AND METHODS  

This study is based entirely on the analysis of existing datasets collected through national 
Swiss monitoring programs. No new fieldwork or primary data collection was conducted 
during this study; all results derive from the integration and statistical analysis of previously 
gathered chemical and biological monitoring data. All site selection and sampling were 
performed by the Swiss National Surface Water Quality Monitoring Program (NAWA); this 
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study’s contribution is in the downstream integration, harmonization, and analysis of these 
existing data sets. 
Thus, the overall workflow of this study involved: (1) obtaining and harmonizing 
macroinvertebrate and chemical monitoring data from national databases; (2) calculating 
chemical metrics; (3) integrating datasets by aligning temporal and spatial sampling 
events; and (4) applying statistical models to evaluate relationships between pesticide 
exposure, bioindicator responses, and environmental parameters. 

3.1. Data Resources and Harmonization 

Two primary datasets were integrated for this study: 
- Macroinvertebrate Dataset (MI-DS) 
- Comprising data from 42 streams across 16 cantons, including 213 monitoring events 

conducted between 2018 and 2023. Each stream was monitored at least annually, with 
70% of the samples collected during spring. 

- Micropollutant Dataset (MP-DS) 
- Encompassing data from 53 streams in 17 cantons, derived from NAWA programs 

(BAFU, 2013), spanning 2011–2023. The dataset includes approximately 10,600 
samples and measurements for around 770 substances, with a focus on pesticides, 
pharmaceuticals, and industrial chemicals. Chronic and acute toxicity criteria were 
available for 440 substances (Swiss Centre for Applied Ecotoxicology, 2020). 

To harmonize the datasets, both were prepared to be compatible in formatting, naming, 
and units. As a key step, MP-DS samples were categorized by composite sampling period 
(3.5-days for acute, 14-days for chronic exposure) and then temporally aligned to 
macroinvertebrate monitoring events in MI-DS for sub-sequent joint analysis. 

3.2. Study Area and Sampling Sites 

Switzerland’s river network extends approximately 65,000 km, of which 43% have 
catchments influenced by agricultural or urban sources of micropollutants, mainly 
concentrated in the Swiss Plateau. In contrast, many sites with minimally expected 
anthropogenic pollution are found in the Alpine zones; however, these low-impact sites 
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were not included in the NAWA monitoring framework for micropollutants (Doppler et al., 
2020). 
This study covers 41 streams distributed primarily across the Swiss Plateau (Figure 1), 
with a few additional locations in the Jura and Alpine zones, as part of the NAWA TREND 

(BAFU, 2013). Sampling sites span an altitudinal gradient from 250 to 660 meters above 
sea level. 

3.3. Swiss Water Quality Assessment: Biological and Chemical Data Collection 
and Calculation 

The assessment of Swiss watercourses is based on micropollutants, nutrients, heavy 
metals, and biological elements, with a particular focus on micropollutants and biological 
diversity in small and medium-sized streams. For the purposes of this study, our focus was 
on macroinvertebrate communities and pesticides. Monitoring is conducted under the 
NAWA framework (BAFU, 2013) and following the Modular Stepwise Procedure (MSK) 
methods (BAFU, 1998; MSK, 2025). These methods were developed collaboratively by 
the Federal Office for the Environment (BAFU), the Swiss Federal Institute of Aquatic 

Figure 1. Spatial distribution of the 41 streams and sampling sites considered in the study. 
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Science and Technology (EAWAG), the Swiss Water Association (VSA) and the cantons 
to assess different components of aquatic ecosystems. 
 
 

3.3.1. Biological Component 

Field sampling and data flow: 

Macroinvertebrate sampling followed standardized MSK protocols (BAFU, 2019; BDM, 
2021, 2022). A section of the stream is selected, and eight points are established to span 
substrate and flow velocity diversity. Macroinvertebrates are collected and samples are 
cleaned, preserved, and labeled for traceability. In the laboratory, specimens are sorted 
and identified primarily to family level, and their abundance is recorded. All data is archived 
and entered into standardized protocols for automated bioindicator calculation. 

- Calculation of bioindicators: 

The selection of IBCH, SPEARpesticides, and EPT as primary bioindicators follows the 
rationale established in the introduction: these indices are widely used in Switzerland, 
sensitive to pesticide impacts, and supported by both regulatory and research frameworks. 

IBCH index: 

The IBCH (Swiss Biological Index) assesses ecological status using two components: 
- Diversity Class (VT value): Number of taxa (family level), adjusted for hydrological 

regime and scaled from 0 to 1. 
- Indicator Group (GI value): Sensitivity of the most water quality-sensitive taxon present, 

also scaled from 0 to 1. 
The final IBCH is calculated as: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0.62 × 𝑉𝑉𝑉𝑉 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 +  0.38 × 𝐺𝐺𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
Status classes are defined as: Very good (≥0.8), Good (0.6–0.8), Moderate (0.4–0.6), 
Unsatisfactory (0.2–0.4), Bad (<0.2). 
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SPEARpesticides index: 

SPEARpesticides is a bioindicator designed to detect the effects of short-term, pulse 
pesticide pollution in agricultural streams. It classifies species based on four key traits: (i) 
their physiological sensitivity to insecticides and related compounds, (ii) their generation 
time, (iii) presence of aquatic stages and (iv) their capacity for migration and recolonization 
(Liess, 2023). It is calculated at the family level using the latest trait database (Liess et al., 
2021). SPEARpesticides in Switzerland does not uses the normalization proposed in the 
last version as it is based on German reference conditions (Knillmann et al., 2018), which 
were considered as unsuitable for Switzerland. 
The formula is: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (4𝑥𝑥𝑖𝑖 + 1) × 𝑦𝑦𝑖𝑖𝑖𝑖=1
𝑛𝑛

∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (4𝑥𝑥𝑖𝑖 + 1)𝑖𝑖=1
𝑛𝑛  

 ×  100 

Where xi: Abundance of the taxon i; yi : 1 (sensitive) or 0 (insensitive). Status classes are 
defined as: Very good (>44), Good (33–44), Moderate (22–33), Unsatisfactory (11–22), 
Bad (≤11). 

EPT Richness: 

EPT richness is a widely used indicator of stream ecological quality (Tubić et al., 2024), 
reflecting the diversity of three insect orders: Ephemeroptera (mayflies), Plecoptera 
(stoneflies), and Trichoptera (caddisflies). The number of distinct taxonomic families 
belonging to each EPT was counted per sample. The total EPT richness is the sum of 
these three counts. 

3.3.2. Chemical component  

Field sampling and data flow:  

The primary sampling strategies are: 
- 14-days composite samples: Continuous, time-proportional composites are used for 

chronic exposure assessment. This type of sampling is mandatory to evaluate the 
numerical requirements stated in the Water Protection Ordinance 
(Gewässerschutzverordnung, GSchV, 1998). 
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- 3.5-days composite samples: Shorter, time-proportional, composites targeting acute 
pollution events, especially during peak pesticide application (Doppler et al., 2012; 
Spycher et al., 2018). 

In the NAWA monitoring program, 14-days composite water samples are collected 
throughout the year using automated samplers maintained at 4°C. During the main 
pesticide application period (April to July), 3.5-days composite samples are also collected 
from some specific streams under larger agricultural pressure to capture short-term 
fluctuations and peaks. For consistency, four consecutive 3.5-days samples are averaged 
to generate a synthetic 14-days value, ensuring comparability with directly measured 14-
days composites. As a result, the annual dataset comprises both measured and calculated 
14-days composite samples, while 3.5-days samples are only available during periods of 
expected peak pesticide concentrations and only at specific streams (Daouk et al., 2022; 
Doppler et al., 2017). 
Chemical analyses are performed primarily using liquid chromatography coupled with 
tandem mass spectrometry (LC-MS/MS and GC-MS/MS) for the majority of substances. 
For pyrethroids and some other compounds, liquid-liquid extraction (LLE) is followed by 
gas chromatography with tandem mass spectrometry. Specific analytical protocols and 
instrumentation may vary between years and laboratories, leading to differences in the 
number of substances analyzed and their respective limits of quantification (LOQ). These 
methodological details are described in Daouk et al. (2022) and Spycher et al. (2019), and 
further information about the methods is available in Moschet et al. (2019) and Rösch et 
al. (2019). 

- Calculation of chemical metrics: 

The calculation of RQs and TUs for both acute (3.5-days) and chronic (14-days) exposures 
directly addresses the study’s secondary objective of comparing chemical metrics under 
different temporal aggregation or time windows, as outlined in the introduction. 

Risk Quotient (RQ) and Toxic Unit (TU) Approaches 

To assess the broader pressure of pesticides on the streams, risk quotients and toxic units 
were calculated for all substances categorized as insecticides, herbicides, or fungicides. 
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These calculations were based on environmental quality criteria (EC, 2011; Junghans et 
al., 2019) or critical effect concentrations (Lewis et al., 2016). 

Individual RQ 
𝑅𝑅𝑅𝑅𝑖𝑖 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖/𝑄𝑄𝑄𝑄𝑖𝑖  

Where MECi is the measured environmental concentration and QCi is the relevant acute 
(for 3.5-days samples) or chronic (for 14-days samples) quality criterion for calculating the 
Acute Risk Quotient (ARQ) and Chronic Risk Quotient (CRQ) respectively (Bai et al., 2018; 
Daouk et al., 2022; Spycher et al., 2018) for each substance “i” measured in each sample. 
It is important to remark that quality criteria were derived based on the most sensitive taxon 
available for each substance, which is not always based on invertebrates (EC, 2011; 
Junghans et al., 2011). It is also relevant to mention that only substances labeled as toxic 
to invertebrates and with QC derived under robustness level 1 and 2 were considered for 
the risk quotient calculation (Swiss Centre for Applied Ecotoxicology, 2020). 

Individual TU 
𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖/𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖    

Where MECi is the measured environmental concentration and CECi is the critical effect 
concentration for Daphnia magna for each substance “i” measured in each sample. For 
acute assessment (3.5-days samples) the “Effective Concentration 50 at 48 hours” (EC50) 
values were used to calculate the TU-EC. For the chronic assessment (14-days samples) 
the “No Observed Effect Concentration at 21 days” (NOEC) values were used to calculate 
TU-NOEC. The ecotoxicological data were sourced from the Pesticide Properties 
Database (PPDB) (Lewis et al., 2016). 

- Aggregation of Chemical metrics per sample: 

For each sample, two aggregation approaches were applied: 

Mixture Approach: 

𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 =  �𝑅𝑅𝑅𝑅𝑖𝑖

𝑛𝑛

𝑖𝑖=1

;  𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =  �𝑇𝑇𝑇𝑇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Maximum Approach: 
𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅1,𝑅𝑅𝑅𝑅2,𝑅𝑅𝑅𝑅3, … ,𝑅𝑅𝑅𝑅𝑛𝑛)  
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𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑚𝑚𝑚𝑚𝑚𝑚 (𝑇𝑇𝑇𝑇1,𝑇𝑇𝑇𝑇2,𝑇𝑇𝑇𝑇3, … ,𝑇𝑇𝑇𝑇𝑛𝑛) 
Where “n” is the number of substances detected in the sample. 
Applying both mixture and maximum approaches allows for the assessment of cumulative 
(chronic) and peak (acute) exposure scenarios, which are critical for understanding the 
ecological risks posed by pesticide mixtures in running waters (Junghans et al., 2013; von 
der Ohe & de Zwart, 2013; Wei et al., 2022). 
Because multiple samples were collected over time at each stream, summary statistics 
were calculated for each metric (mixture and maximum approaches) within the considered 
time windows (explained in next section) prior to the macroinvertebrate sampling: 
- Mean (e.g., 𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚),𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)). 

- Median (e.g., 𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚),𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)). 

- Maximum (e.g., 𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚),𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚),𝑇𝑇𝑇𝑇(𝑚𝑚𝑚𝑚𝑚𝑚; 𝑚𝑚𝑚𝑚𝑚𝑚)). 

3.4. Data alignment: 

To relate chemical metrics to biological responses from the bioindicators values, we 
implemented a temporal alignment approach: for each macroinvertebrate sampling event, 
chemical metrics (Risk Quotients, Toxic Units) were summarized as the mean, median, 
and maximum over seven cumulative time windows (1 week, 2 weeks, 1 month, 2 months, 
3 months, 6 months, and 1 year) preceding the macroinvertebrate sampling date. For 
example, the "1-week" window includes all chemical samples collected in the week prior 
to each macroinvertebrate sample. These samples are used to calculate and summarize 
chemical metrics, as previously outlined. The "2-weeks" window includes all samples from 
the preceding two weeks, and so forth. This method allowed us to maximize the use of 
available data despite the lack of perfectly time-matched chemical and biological samples. 
Therefore, for each stream and macroinvertebrate monitoring, these chemical metrics, 
calculated in both mixture and maximum forms, and aggregated as mean, median, and 
maximum, were systematically aligned to the corresponding bioindicator values. 
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3.5. Data and Statistical Analysis 

Statistical analyses were designed to systematically test the relationships between 
chemical pressure (as measured by RQs and TUs across sampling periods and different 
lengths of the considered time window), macroinvertebrate bioindicators, and 
environmental parameters. 

3.5.1. Data Preparation 

All numerical variables, including environmental parameters (e.g., catchment area, 
discharge, land use fractions, water temperature, etc.) and chemical metrics, were 
standardized (z-score scaling) to ensure comparability. Chemical metrics were log(x+1)-
transformed prior to scaling to mitigate skewness. No missing data was found. 
 

3.5.2. Statistical and Modelling Analysis 

To evaluate the relationship between chemical metrics and macroinvertebrate 
bioindicators, we applied a suite of statistical models, with model selection and validation 
tailored to data availability and structure for each sampling period. Importantly, each 
chemical metric (RQmix, RQmax, TUmix, and TUmax) was evaluated individually as a sole 
predictor in separate models for each data subset defined by time window, isolating and 
assessing the specific effect of each chemical metric on bioindicator responses. 

3.5.3. Modeling approach: 

We began by calculating Spearman rank correlations to assess initial associations 
between chemical metrics and bioindicators across all time windows and sampling periods. 
For regression analyses, we applied linear models (LM), generalized additive models 
(GAM), linear mixed-effects models (LMM), and generalized additive mixed models 
(GAMM), incorporating year as a random effect where appropriate. The choice of modeling 
approach was guided by both data characteristics and model diagnostics: 
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- LMMs were prioritized for datasets where repeated measurements across years could 
be leveraged, with year included as a random effect to account for temporal structure. 

- GAMs and GAMMs were used primarily when linear models showed poor fit or violated 
assumptions (e.g., non-linearity, heteroscedasticity), allowing for flexible, data-driven 
modeling of potentially complex relationships. 

Model assumptions (normality, homoscedasticity, linearity, and outliers) were checked via 
residual diagnostics and Cook’s distance. Model selection was mainly guided by 
explanatory power, Akaike’s Information Criterion (AIC), and ecological plausibility. 
To assess model robustness and potential overfitting, we performed cross-validation (CV) 
for all main models. Five-fold CV was used for both sampling periods due to limited sample 
size. As an additional benchmark and to test for potential non-linear or interactive effects 
not captured by parametric models, we included Random Forest (RF) regression in the CV 
framework. However, the primary purpose of RF was not predictive optimization, but rather 
to provide a flexible, non-parametric reference for model comparison. Model performance 
was evaluated using cross-validated root mean squared error (RMSE) and R².  

Conceptualization for the implementation of abiotic factors in statistical models 

In this research, abiotic factors are divided into two main categories: chemical metrics (e.g., 
RQs and TUs) and environmental parameters (e.g., agricultural land use, water 
temperature, etc.). To avoid confusion, we refer to the latter group as environmental 
parameters throughout the document. 
Environmental parameters were grouped into five major categories: land use, spatial, 
hydrological, morphological, and temporal. Due to their slow-changing nature and data 
limitations, most variables were treated as temporally static, with 2023 values used as 
proxies across all years (Table S1). Flow velocity and water temperature were modeled 
from static landscape features (Khaliq et al., 2024) and thus also treated as static. 
Precipitation, although dynamic, was not retained in final models due to lack of significant 
effect. 
Candidate models were initially developed to include at least one representative variable 
from each environmental parameter, with year included as a random effect where feasible. 
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Implementation of environmental parameters and final model selection was guided by 
ecological plausibility, correlation and principal component analysis, and variance inflation 
factors, resulting in a parsimonious model structure that included the most relevant 
chemical metric, proportion of agricultural land use, and flow velocity, with slight variations 
depending on the sampling period. 

3.5.4. Interpretation and Reporting 

Results are presented as correlation coefficients, regression coefficients, and 95% 
confidence intervals. Vertical forest plots visualize effect sizes across time windows, 
regression plots illustrate key relationships and partial effects between variables, cross-
validation values assess model performance, and PCA biplots display the multivariate data 
structure. All analyses were conducted in R (v4.4.2) using multiple packages; the code is 
available in the Supplementary Information (Link 1). Only models with significant or 
marginally significant results (p ≤ 0.10) and/or superior predictive performance (as 
indicated by cross-validated RMSE and R²) were retained for primary interpretation across 
time windows and modelling approaches, taking ecological plausibility into account. 

4. RESULTS 

4.1. Overview of Data and Sampling 

A total of 41 streams were included in the study, with data collected over six years (2018–
2023). Macroinvertebrate data were available from 195 sampling events, unevenly 
distributed across streams and years. For chemical analysis, composite water samples 
were collected using either 14-days or 3.5-days sampling periods, depending on the site 
and year. The 14-days composite samples were collected systematically throughout the 
year at all sites, as part of the standard monitoring protocol. In contrast, the 3.5-days 
composite samples were targeted primarily at sites known or suspected to be impacted by 
pesticide use, allowing for higher temporal resolution, and targeted analysis of specific 
compound groups, such as pyrethroids. 
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The numbers in Table 1 reflect the total number of observations across all sites and years 
for each time window, not per site. Temporal alignment of chemical and biological data 
revealed that, for the 3.5-days sampling period, 22 streams had micropollutant data 
available within 1-week to 1-year prior to macroinvertebrate monitoring, while for the 14-
days sampling, all 41 streams were represented in the 1-year window. 
Table 1. Number of observations per time window and sampling period. The numbers represent the total observations across all 41 streams 
and all years for each time window. 

3.5-days sampling 
period 1-week 2-weeks 1-month 2-months 3-months 6-months 1-year 

Macroinvertebrates 
monitoring 34 39 39 42 42 45 92 

Streams 13 13 13 15 15 16 22 
Chemical samples 69 145 293 567 848 1115 1854 

Considered substances 73 73 73 74 74 74 74 
Range of years 2019 – 2023 

14-days sampling 
period 1-week 2-weeks 1-month 2-months 3-months 6-months 1-year 

Macroinvertebrates 
monitoring 111 177 183 185 185 194 195 

Streams 38 40 40 40 40 41 41 
Chemical samples 123 226 438 831 1171 2054 3281 

Considered substances 109 110 110 110 111 111 111 
Range of years 2018 – 2023 

4.2. Exploratory Analysis 

4.2.1. Correlation: Bioindicators and Chemical Metrics  

As shown in Figure S1, Spearman correlation matrices revealed negative associations 
between chemical metrics and bioindicators, especially for SPEARpesticides and GI. In 
the 3.5-days sampling period dataset, SPEARpesticides correlations ranged from −0.22 to 
−0.61, and GI correlations ranged from −0.21 to −0.45. In the 14-days sampling period 
dataset, SPEARpesticides correlations ranged from −0.16 to −0.41, GI correlations ranged 
from −0.18 to −0.44, and IBCH correlations ranged from −0.14 to −0.17. EPT showed 
negative correlations ranging from −0.33 to −0.38 and from −0.15 to −0.17 in the 3.5-days 
and 14-days sampling datasets, but only for one time window. The VT index did not show 
significant or consistent correlations over time windows. 
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4.2.2. Principal Component Analysis of Abiotic Factors 

Principal component analysis (PCA) was used to reduce the dimensionality of the 
environmental dataset and to identify the main gradients structuring abiotic conditions 
across sampling periods and time windows. This approach clarifies which factors most 
strongly differentiate stream environments as more streams and chemical samples are 
included across time windows, facilitating the identification of the most pertinent 
environmental variables for subsequent modeling. 
PCA was conducted for each time window and for both sampling periods (Figure 2). Since 
macroinvertebrate monitorings are related to specific streams, increasing the time window 
results in the inclusion of more streams and chemical samples. Except for chemical 
metrics, all abiotic factors were static across years, reflecting their spatial nature and data 
constraints.  
For static variables, values of 2023 were used as proxies, so differences across time 
windows primarily reflect the addition of chemical data and sites. We focus on three main 
time windows for description, 1-week, 2-months, and 1-year, selected based on the 
frequency of monitoring (Table 1). The environmental variables were categorized into five 

Figure 2. PCA-Biplot for both sampling periods across 1-week, 2-months and 1-year time windows (Each abiotic factor belongs 
to one dimension, while magnitude reflects each variable’s loading in the PCA). 
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dimensions (1) Land Use in the catchment: proportions of agricultural, forest, and urban 
land use upstream of the sampling point, (2) Spatial: modelled maximum summer water 
temperature (°C), altitude (m.a.s.l.), (3) Hydrological: modelled flow velocity (m.s-1), annual 
average modeled discharge (m3.s-1), (4) Morphological: ecomorphology (classification 
based on water body morphology, ranging from 0 (natural) to 12 (unnatural)), and (5) 
Temporal: year of sampling. 
In both the 3.5- and 14-days sampling periods, the first principal component (PC1) 
consistently reflected an "agricultural pressure" gradient, defined by high loadings for 
agricultural land proportion and chemical metrics, opposed by forest land proportion and 
flow velocity. This second association between forest and flow velocity likely represents a 
gradient of naturalness and hydrological regime. Conversely, urban land proportion and 
ecomorphology formed a distinct anthropogenic axis, particularly in the 14-days sampling 
period. This highlights the influence of urbanization on stream morphology and habitat 
quality. 
The magnitude of each variable’s loading in the PCA reflects its relative contribution to the 
principal components, with higher absolute values indicating a stronger influence on the 
environmental gradient (Figure 2). As the time window increased, the association between 
chemical metrics and proportion of agricultural land use weakened, but the influence of 
land use and hydrology remained consistent. Overall, these results demonstrate that 
agricultural activities, hydrological and forest characteristics, and urbanization are the 
dominant forces structuring the abiotic environment in these streams, across the 
evaluation of the sampling periods and time windows. 

4.3. Bioindicator Response to Chemical Metrics 

4.3.1. Linear Models (LM/LMM) 
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3.5-days Sampling Period 

In the 3.5-days sampling period, the relationship between pesticide pressure and 
macroinvertebrate bioindicators was assessed using both LMMs and LMs. LMMs initially 
included “year” as a random effect; however, many models exhibited singular fits (i.e., the 
model could not reliably estimate variance for the random effect, likely due to the limited 
sample size or low variation in “year”; see Figure S2-A). Consequently, LMs were used as 
the primary approach, providing robust estimates and confidence intervals (Figure 3). 

All models that reached at least marginal significance (p ≤ 0.1), including those fully 
significant (p ≤ 0.05), demonstrated negative estimates. Thus, negative associations for 
both SPEARpesticides and GI, indicating that increased pesticide exposure corresponded 
to lower values of these bioindicators. Significant negative effects (confidence intervals not 
crossing zero in Figure 3) were detected for specific chemical metrics. Particularly for the 
mixture-median representation of the TU-EC and ARQ metrics at several time windows. 
No significant estimates were identified for IBCH, VT or EPT over the time windows in this 
sampling period (Figure S2-B). 

Figure 3. Model Estimates (slopes), Confidence Intervals, and Adjusted R2 for the Linear Models in the 3.5-days sampling period. 
Only the slopes of the models that are at least marginally significant (p < 0.1) are shown. 
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The explanatory power of these models, as indicated by adjusted R², ranged from 0.03 to 
0.15 for SPEARpesticides and from 0.05 to 0.09 for GI (Figure 3). Generally, ARQ-based 
metrics provided higher explanatory power than TU-based metrics for both bioindicators. 
Nevertheless, although the LMs provided a reasonable fit overall, residuals versus fitted 
value plots showed that the linearity assumption was only partially met for most models. 
Moreover, outliers disproportionately influenced the statistical representations of chemical 
metrics, while the 'median' was occasionally more robust, though it did not consistently 
mitigate the influence of outliers across all metrics (Figure S3). 
Given these limitations, including non-linearity, and modest explanatory power, we 
proceeded to explore non-linear relationships using generalized additive models (GAMs). 

14-days Sampling Period  

For the 14-days sampling period, LMMs were fitted to assess the relationship between 
pesticide pressure and macroinvertebrate bioindicators (Figure 4). The relatively large 
number of observations for these models (Table 1) prevented singular fits and contributed 
to model stability. 
Across all chemical metrics, the direction of effect (slope) was consistently negative, 
indicating that higher pesticide concentrations were associated with lower bioindicator 
values. Effect estimates and confidence intervals for each bioindicator and chemical metric 
are illustrated in Figure 4. Conditional R² values indicated varied explanatory power: 0.59 
- 0.64 for EPT, 0.11 - 0.18 for SPEARpesticides, 0.04 - 0.10 for GI and IBCH. Marginal R2 
values, reflecting the variance explained by chemical metrics alone, were highest for 
SPEARpesticides and GI, especially in shorter time windows. The random effects 
increased explanatory power for SPEARpesticides by approximately 2- to 5- fold, and for 
EPT by approximately 22- to 60-fold. 



 

27 

Across all statistical representations (mean, median, maximum), effect sizes and 
significance levels were similar. The “mixture” approach was found to be sufficient, and 
CRQs were the most prominent chemical metrics. Despite the consistent negative 
relationships, the overall explanatory power of these models was limited. It is important to 
note that model assumptions were not fully met for GI or EPT, and only marginally for 
IBCH, exhibiting non-normal residuals and heteroscedasticity (Figure S4). Therefore, 
results for these indices should be interpreted with caution, and primary emphasis should 
be placed on the more robust findings for SPEARpesticides. 

 
 
 
 

Figure 4. Model Estimates, Confidence Intervals, Conditional and Marginal R2 for the Linear Mixed Models in the 14-days sampling. 
Only the slopes of the models that are at least marginally significant (p < 0.1) are shown. 
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4.3.2. Non-linear Modeling of Pesticide-Bioindicator Relationships 

3.5-days sampling period: Generalized Additive Models (GAMs) 

We fitted GAMs to capture potential nonlinear relationships between pesticides pressure 
and bioindicator response. GAMs yielded a wider range of significant models for ARQ and 
TU-EC metrics across all time windows for SPEARpesticides and GI (Figures S5 and S6).  
However, in the 1-week window, although some models showed reasonable fit (R2 = 0.14 
- 0.20), the estimated values for SPEARpesticides or GI were inconsistent and often 
ecologically implausible based on the response of the bioindicator. This shows the 
importance of not relying solely on fit metrics, particularly at the extremes of the predictor 
range, and underscores the need for careful graphical interpretation. 
In the 2-weeks window, graphical inspection revealed that GI’s fit was largely driven by the 
smoother’s adaptation to a few extreme values at high pesticide pressure, with a clearer 
negative trend only apparent at lower exposure levels (Figure S5). For SPEARpesticides, 
the negative trend was clearer and more consistent, particularly for ARQ(mix, median) and 
TU-EC(mix, median), even in the presence of outliers (Figure 5). 

Figure 5. Comparison of Linear (red line) and Generalized Additive Models (blue line) for SPEARpesticides vs. TU(mix, median) 
and ARQ(mix, median) in 2-weeks, 3-months, and 1-year time windows. 
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From the 1-month to the 6-months windows, similar patterns persisted (Figures S5 and 
S6). For example, in the 3-months window, both “max” and “median” statistical 
representations were significant or marginally significant for SPEARpesticides. ARQ-
based metrics yielded a marginally significant and negative relationship, with values 
matching those from their LM counterparts (R² = 0.15, p = 0.06) (Figure 5). In these cases, 
the effective degrees of freedom (EDF) were equal to one, indicating that the GAMs 
recognized and retained the linearity of the relationship when appropriate. TU-EC(mix, 
median) showed improved explanatory power from LM (R² = 0.06) to GAM (R² = 0.13) in 
the same window (Figure 5). In contrast, GI models became less plausible, highlighting 
their limited sensitivity to chemical metrics (Figure S5). 
In the 1-year window, no significant GAM was obtained for GI (Figure S5). For 
SPEARpesticides, TU-EC(mix; median) demonstrate an increased explanatory power 
from LM (R² = 0.04) to GAM (R² = 0.14). Other significant chemical metrics, such as 
ARQ(mix; median), had R² below 0.10. Nevertheless, a negative trend between 
SPEARpesticides and chemical metrics remained evident (Figure 5). 
Overall, the explanatory power for SPEARpesticides was improved by GAMs (R² = 0.03–
0.15 in LMs and 0.10–0.28 in GAMs). However, chemical metrics still explain only a 
moderate proportion of the variability in the bioindicator for most GAMs, the presence of 
an isolated observation above 4 units (in log1p and scaled units) caused the curve to rise 
and uncertainty to increase at higher pesticide concentrations. TU-EC metrics, however, 
appeared less affected by this outlier, with the negative relationship most apparent where 
observations were densely aggregated and prediction intervals were narrower. Across all 
time windows, SPEARpesticides was more consistently and robustly explained by TU-EC 
and ARQ metrics in their (mix, median) representations compared to GI (Figures S5 and 
S6). Even when models were statistically significant and exhibited high explanatory power, 
graphical evaluation was essential to check direction and ecological plausibility of the 
relationships. 
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14-days sampling period: Generalized Additive Mixed Models (GAMMs) 

Following the LMM analysis of the 14-days sampling period, which revealed that EPT was 
primarily explained by the random effect (year) and that SPEARpesticides was best 
explained by the fixed effects (chemical metrics), we further explored potential nonlinear 
relationships using GAMMs, motivated by the observed deviations of the model 
assumptions, as well as the pronounced influence of the random effect. 
GAMMs were fitted with year as a random effect. For SPEARpesticides, the difference 
between marginal and conditional R² remained similar to the LMMs, and the overall 
explanatory power did not increase. Model selection criteria (AIC) was higher for the 
GAMMs than for the LMMs, with differences of 4-6 units. This indicates no meaningful 
advantage in model complexity (Figure S7). 
For IBCH, GI, and EPT, GAMMs failed to resolve the diagnostic issues observed in LMMs. 
QQ plots continued to display step-like patterns, and residual plots showed persistent arcs 
or systematic deviations, particularly for GI and IBCH (Figures S4). EPT exhibited a slight 
improvement in residual distribution, but not in AIC or model interpretability. Fitted smooth 
terms for GI, IBCH and EPT were flat or lacked a discernible trend across chemical metrics. 
GAMMs did not improve model fit, explanatory power or performance for any bioindicators 
compared to LMMs. Marginal and conditional R² values and fitted relationship shapes 
remained largely unchanged. For SPEARpesticides, results were consistent enough with 
LMMs; for GI, IBCH and EPT, models were limited by assumption violations and lack of 
clear association with chemical metrics. 

4.3.3. Synthesis and further modeling 

Given the contrasting performance of statistical models across sampling periods, we 
addressed our analytical approach to best capture the relationships between pesticide 
exposure and bioindicator response. For the 3.5-days composite samples, GAMs were 
employed due to evidence of non-linearity, and outlier influence. The improved explanatory 
power and interpretability observed with this flexible modeling framework also led us to 
select it over LMs. In contrast, for the 14-days sampling period, LMMs proved most 
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appropriate, as the relationship between chemical metrics and bioindicators, particularly 
SPEARpesticides, was adequately described by linear associations, and the inclusion of 
random effects accounted for substantial variance. 
These differences in model fit likely reflect both the temporal resolution of the chemical 
data and the ecological processes captured at each sampling scale even when being 
composite samples.  

4.4. Integration of Environmental Parameters 

4.4.1. Selection of Environmental Parameters for Integrated Regression Modeling 

The integration of environmental parameters into our regression models was motivated by 
two main considerations. First, initial analyses using only chemical metrics as predictors 
for SPEARpesticides revealed limited explanatory power, suggesting that other sources of 
variability were influencing macroinvertebrate responses. Second, our PCA results 
highlighted key environmental gradients, especially those related to proportion of 
agricultural land use (associated with pesticide pressure), hydrology, and urbanization. 
This underscored the need to move beyond a purely chemical perspective and to account 
for the broader environmental context in which pesticide pressure and biological responses 
occur. 
The potential relationships between each parameter, and its influence on pesticide 
pressure and macroinvertebrate response, were conceptually evaluated. For instance, 
water temperature is modeled by altitude and catchment area; flow velocity is determined 
by slope, discharge, and width (Khaliq et al., 2024); and discharge is a function of 
catchment area (BAFU, 2020). These inherent relationships required caution to avoid 
collinearity in our model construction. Notably, a conceptual link exists between proportion 
of agricultural land use and chemical metrics, as greater agricultural land use increases 
the probability of pesticide application and runoff, a relationship acknowledged in the 
definition of SPEARpesticides (Liess et al., 2008, 2021). Similarly, hydrological variables 
such as discharge and flow velocity are interrelated, and their influence on pesticide 
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concentrations is mediated by both dilution and dispersal processes, as well as by the 
timing and nature of runoff events (Doppler et al., 2012). 
To empirically assess these relationships, we conducted correlation analyses between 
SPEARpesticides and abiotic factors for each time window on the 3.5-days sampling 
period. Consistent negative correlations were observed between SPEARpesticides and 
both proportion of agricultural land use and chemical metrics, while moderate positive 
correlations were found with forest proportion, altitude, flow velocity, and discharge (Figure 
S1-A). The same correlation structure was observed for the 14-days sampling period, with 
the addition of urban proportion and ecomorphology showing negative associations with 
SPEARpesticides, consistent with PCA results (Figure S1-B). 
Correlation analyses among abiotic factors revealed strong associations within each 
dimension (e.g., among land use or hydrological variables) and modest positive 
correlations between proportion of agricultural land use and chemical metrics, as well as 
negative associations between agricultural and forest proportions, and between urban and 
forest land uses (Figure S8). These findings suggest that the positive relationship between 
SPEARpesticides and forest proportion may reflect the spatial opposition to proportion of 
agricultural land use, rather than a direct causal effect. 
Based on these insights, we selected proportion of agricultural land use, chemical metric, 
and flow velocity as variables for regression modelling in the 3.5-days period, as they 
loaded strongly on the main axes in the PCA and defined clear environmental gradients. 
For the 14-days period, we chose proportion of agricultural and urban land use, chemical 
metric, and flow velocity, as these variables were consistently important across time 
windows and could capture chemical and spatial drivers of macroinvertebrate community 
structure. 
Finally, this approach aligns with our second specific objective: to evaluate the influence 
of environmental parameters on the relationship between chemical metrics and biological 
response. At this stage, SPEARpesticides stood as the only bioindicator that exhibited 
consistent responses to chemical metrics in prior analyses. Consequently, it was the 
exclusive bioindicator utilized in the subsequent analyses. 
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4.4.2. Integration of Environmental Parameters in the Regression Models  

3.5-days Sampling Period 

We assessed the impact of pesticides and abiotic factors on macroinvertebrates, using 
GAMs and SPEARpesticides as the bioindicator. The predictors included TU-EC(mix, 
median) and ARQ(mix, median), alongside proportion of agricultural land use and flow 
velocity. 

Model Selection and Diagnostics 

Initial models incorporated TU-EC(mix, median), proportion of agricultural land use, and 
flow velocity. In the Table S2, which presents the results of the GAMs across all the time 
windows, the models demonstrated robust explanatory power, with adjusted R² values 
above 40% and reaching up to 70%. Model selection criteria, as indicated by AIC values, 
remained relatively stable across time windows (ranging from 222 to 278), but increased 
substantially in the 1-year window (AIC = 600), suggesting a decrease in model parsimony 
for longer integration periods. 
Statistical significance was consistently observed for proportion of agricultural land use 
and flow velocity (p < 0.05), while TU-EC(mix, median) was significant or marginally 
significant in most windows (except at 1 week, where p = 0.18, still indicating a potential 
effect). The effective degrees of freedom (EDF) for TU-EC ranged between 1 and 2.5, 
indicating a predominantly linear or gently curved relationship. For proportion of agricultural 
land use, EDF values ranged from 1 to 4.5, with higher values (and more complex, “wiggly” 
fits) observed when TU-EC’s EDF was 1, and vice versa. Flow velocity consistently 
exhibited EDF values around 4. F-statistics across all models ranked the predictors in the 
following order of explanatory strength: proportion of agricultural land use > flow velocity > 
TU-EC(mix, median). 

Visual and Ecological Interpretation 

Visual inspection of the fitted GAMs (Figure 6) revealed that proportion of agricultural land 
use exerted a linear and consistently negative effect on SPEARpesticides, underscoring 
their role as a dominant static environmental parameter. TU-EC(mix, median) also showed 
a negative association, with a smoother fit and reduced uncertainty intervals compared to 
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models including only the chemical metric (Figure S9). Flow velocity, while a significant 
predictor, did not display a strongly positive trend; its inclusion nonetheless improved 

model fit and reduced uncertainty, reflecting its relevance as a hydrological driver. This 
suggests that the inclusion of both proportion of agricultural land use and flow velocity 
helps absorb unexplained variance and provides a more stable estimate of pesticide 
pressure effects. 
Alternative models, including only flow velocity or proportion of agricultural land use, 
yielded lower explanatory power, and produced unstable fits. The closest alternative in 
terms of AIC and R² was the model with proportion of agricultural land use and flow 
velocity, but without the chemical metric. However, the EDF for proportion of agricultural 
exceeded 4.3, suggesting overfitting (Table S2, Figure S10). 
Additional predictors (e.g., urban proportion and ecomorphology) were tested but did not 
meaningfully improve the model or provide interpretable relationships with 
SPEARpesticides. Similarly, substituting ARQ(mix, median) for TU-EC(mix, median) 

Figure 6. Partial effects of TU-EC(mix, median), proportion of agricultural land use, and flow velocity on SPEARpesticides across 
selected scenarios (see row labels) using multivariate GAMs. The values (R2, AIC, and intercept) for each model (facet row) are 
displayed in the TU box because they are identical for the other two predictors, as they belong to the same model. 
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resulted in non-significant effects and only a weak negative trend, suggesting that TU-EC 
is a more sensitive and ecologically relevant indicator of pesticide pressure in this context 
(Table S2). Other bioindicators did not yield plausible or interpretable results and were 
therefore not considered further. 
14-days Sampling Period 
We constructed a series of LMMs using proportion of agricultural and urban land use, and 
flow velocity, alongside the chemical metric CRQ(mix, max). The choice of this chemical 
metric was supported by our observation that a more specific chemical signal was 
necessary to capture the impact of pesticide pressure in composite samples where peak 
pesticide events are likely smoothed. This concept is further explained below. 

Model Selection and Diagnostics 

Nine candidate models were evaluated, each representing different combinations of the 
main abiotic gradients and the chemical metric (Figure S11). Models containing only one 
abiotic variable plus the chemical metric consistently exhibited low explanatory power, with 
adjusted R² values below 20%. The best-performing model included proportion of 
agricultural and urban land use, flow velocity, and CRQ(mix, max) across all time windows 
(Model 2 in Figure S11). This model demonstrated superior parsimony (lowest AIC by 5–
6 units compared to the next best model) and higher explanatory power (marginal R² 
always 2–3% above the second-best model). 
The explanatory power of the selected model was consistent across time windows, with 
marginal and conditional R² values nearly identical, ranging from 0.29 and 0.30 in the 1-
year window to 0.40 and 0.42 in the 1-week window, indicating that the inclusion of 
environmental parameters effectively reduced the influence of the random effect (year). 
This contrasts with models considering only chemical metrics, where the random effect 
accounted for a much larger proportion of the explained variance. 
The statistical and absolute importance of the predictors, based on their estimates 
(slopes), followed a consistent order: agricultural proportion > flow velocity > urban 
proportion > chemical metric. CRQ(mix, max) always exhibited a negative estimate, with 
effect sizes ranging from -0.3 (1-year window) to -1.48 (3-months window). The effect of 
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the chemical metric increased from the 1-week to the 2-month window (Figure S11), then 
gradually decreased as the time window lengthened, mirroring the pattern observed in the 
PCA, where the chemical metric’s relevance diminished as more samples and spatial 
variability were included. 
Removing the chemical metric resulted in a 2–3% reduction in R², with minimal change in 
AIC (Figure S13), while attempts to add random slopes or interactions did not improve 
model fit due to limited observations per year. 
All predictor estimates were ecologically plausible based on the effect over 
macroinvertebrate communities: negative for the chemical metric, proportion of agricultural 
and urban land use, while positive for flow velocity. This aligns with the expectation that 
increased pesticide pressure and anthropogenic land use reduce macroinvertebrate 
community integrity, while greater flow velocity may reflect more natural or less impacted 
stream conditions as shown in the PCA analysis. 
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Visual and Ecological Interpretation 

Visual inspection revealed (Figure 7) that the inclusion of environmental parameters led to 
a reduction in the uncertainty around the estimated effect of the chemical metric CRQ(mix, 
max) in all the time windows (Figure S12). In contrast, the uncertainty associated with the 
environmental parameters themselves did not show a comparable reduction, and their 
effect estimates remained relatively stable and robust across time windows (Figure S13). 
This suggests that, while environmental parameters are essential for capturing the broader 
environmental context and improving model fit, their predictive precision does not benefit 
as markedly from the integrated model as does the chemical metric in this context. 

4.5. Cross-Validation and Predictive Performance 

To further assess the robustness and generalizability of our selected models, we 
conducted 5-fold CV for both the 3.5-days and 14-days sampling periods. In addition to 
our best models (GAM, LMM), we implemented Random Forest (RF) as a non-linear, 

Figure 7. Partial effects of CRQ(mix, max), proportion of agricultural and urban land use, and flow velocity on SPEARpesticides 
across selected scenarios (see row labels) using multivariate LMMs. The values (R2, AIC, and intercept) for each model (facet row) 
are displayed in the CRQ box because they are identical for the other two predictors, as they belong to the same model. 
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flexible benchmark to test whether more complex relationships or interactions might exist 
between SPEARpesticides and the predictor variables. It is important to note that the 
primary aim of this thesis is to infer relationships between pesticide pressure, 
environmental parameters, and bioindicators, rather than to maximize predictive accuracy. 
Nevertheless, CV offers a transparent assessment of model stability and helps identify 
potential limitations in model structure. 

4.5.1. 3.5-days Sampling Period 

For the 3.5-days period, the CV was performed as follows: SPEARpesticides ~ TU-
ECmix,median + proportion of agricultural land use + flow velocity, using GAM, LM, and 
RF approaches (Figure 8). In the 1-week window, the GAM produced a negative R², likely 
due to the small sample size (n ≈ 30), but from 2 weeks onward, both GAM and RF yielded 
plausible results. Across most time windows, RF and GAM outperformed LM in both RMSE 
and R², particularly in larger datasets (e.g., 3–6 months, 1 year). This suggests that flexible, 
non-linear approaches can better capture the relationships in the data when sufficient 
observations are available. 
When the chemical metric was removed, the stability and explanatory power of the GAM 
decreased, especially in intermediate time windows. Additionally, when using only 
chemical metrics, both GAM and RF produced implausible results (negative R² across all 
time windows), highlighting the relevance of integrating both chemical and environmental 
parameters. 

4.5.2. 14-days Sampling Period 
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For the 14-days period, the model: SPEARpesticides ~ CRQmix,max + proportion of 
agricultural land use + urban proportion + flow velocity, was evaluated using LMM (with 
year as a random effect) and RF (with year as a predictor) (Figure 8). However, the LMM 
was singular in 6 out of 7 time-windows, likely due to the reduced sample size in each CV 
fold and the complexity of the model. Simplifying the model by using LM (with year as a 
fixed effect) or including interaction terms (e.g., Proportion of agricultural land use × 
Chemical Metric) did not improve performance. In all cases, RF outperformed the 
parametric models, with R² values around 0.6 across time windows, compared to 0.3–0.4 
for LMM/LM (Figure 8). This suggests the presence of complex, non-linear, or interactive 
effects that cannot be robustly identified with the current dataset and parametric 
approaches. 

 

Figure 8. Cross-Validation Performance of the Linear Model, Linear Mixed Model, Generalized Additive Model and Random 
Forest in the 3.5- and 14-days Sampling Period. 
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5. DISCUSSION 

5.1. Main Findings in Relation to Objectives and Hypotheses 

This study set out to evaluate the applicability of SPEARpesticides, alongside other 
bioindicators, for reflecting pesticide impacts on macroinvertebrate communities in Swiss 
streams, within the context of the NAWA framework. The results support the primary 
hypothesis: elevated pesticide pressure, as quantified by risk quotients (RQs) and toxic 

units (TUs), is associated with a measurable decline in sensitive macroinvertebrate taxa. 
This effect, most clearly captured by the SPEARpesticides index, demonstrates a negative 
relationship between pesticide pressure and the bioindicator variability. These 
relationships yield a range of R² from 0.1 to 0.3. The strength depends on the chemical 
metric, sampling period, time window, and statistical modeling approach selected. These 
results align with those of previous research that used SPEARpesticides to reflect pesticide 
impacts across Europe (Beketov et al., 2013; Kuzmanović et al., 2016; Liess et al., 2021; 
Rasmussen et al., 2012), South America (Hunt et al., 2017) and East Africa (Ganatra et 
al., 2021). 
RQs, being based on Environmental Quality Criteria designed to protect a broad range of 
organisms (Peterson, 2006; von der Ohe et al., 2008) may be preferable when regulatory 
thresholds and linear models are the focus. In contrast, TUs are calculated using effect 
concentrations for the aquatic species under analysis, often invertebrates such as D. 

magna, making them more ecologically targeted, providing insights under more flexible, 
data-driven modeling (Ginebreda et al., 2014; von der Ohe & de Zwart, 2013). This 
specificity allowed TU-EC to capture more nuanced, non-linear relationships in flexible 
models such as GAMs in our 3.5-days sampling period. However, we cannot neglect that 
in many cases the non-linear behavior captured by the GAMs was due to an isolated higher 
pesticide pressure value, while in the area where the most of our observations are 
aggregated, a clear negative relationship, characterized by a nearly linear trend, is evident. 
A significant aspect of our findings is the considerable uncertainty observed in the 
regression analyses, especially at the extremes of the exposure gradient. Isolated, rare 
high-exposure events increased variability in model predictions and reduced confidence in 
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these regions. This pattern is likely the result of factors such as data aggregation or the 
use of composite samples. The necessity for broader data coverage across the exposure 
gradient, sensitivity analyses (e.g., excluding rare events), and cautious interpretation is 
underscored by this pattern. These uncertainty levels may also be caused by unseen 
factors in our approach. Therefore, continued methodological refinement is crucial to better 
quantifying and communicating confidence in ecological risk assessments (Moe et al., 
2022). 
With respect to the outcomes based on sampling periods, we obtained more information 
from the 3.5-days samples, reflecting our acute approach, with different strengths of the 
negative relationship that spanned an R² from 0.1 to 0.3. Conversely, within the 14-day 
sampling period, consistent with our chronic approach, the slopes and R² ranged from 0.1 
to 0.2, indicative of a more stable negative relationship. This is presumably due to the 
prolonged composite samples, which tend to smooth out exposure events, resulting in a 
conservative value of the chemical metric (Peterson, 2006; Spycher et al., 2018). 
Ultimately, this proves insufficient for the SPEARpesticides index, underscoring a limitation 
in the bioindicator sensitivity. Nevertheless, we cannot neglect the distinction between the 
3.5-day and 14-day sampling periods. The primary objective of these samples differs, as 
the 3.5-day samples are collected in locations where the exposure to pesticides is 
presumed to occur, while the 14-day samples are part of a more comprehensive 
framework. This distinction could be the reason why the chemical metrics derived from the 
3.5-day samples are more prone to predict the SPEARpesticides results. 
In accordance with our second specific objective, we hypothesized that the smoother value 
of the 14-days sample would be comparable to the other environmental parameters and 
that including them would improve the model's power. This was confirmed by the inclusion 
of land use and hydrological variables, which were observed to be relevant predictors. This 
observation aligns with the findings of Rico et al. (2016), who reported a similar relationship 
between a bioindicator and a chemical metric in a multistressor scenario. Indeed, the PCA 
analysis showed that the "agricultural pressure gradient" was an indicator of the 
effectiveness of the chemical metrics derived from the chronic approach. The link between 
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chemical metrics and the proportion of agricultural land use became clearer during the 3.5-
day sampling period than during the 14-day sampling period. 
Finally, both the regression analysis and the PCA exhibited a consensus, albeit at varying 
levels, in reflecting the temporal variations across designated time-windows. The higher 
explanatory power of the relationship and the robust association of the agricultural 
pressure gradient were consistently observed to be dependent on the aggregation of 
samples that were more proximate to the macroinvertebrate monitoring. This finding 
served to conclude the third objective of our research approach. 

5.2. Interpretation of Bioindicator Responses 

A key characteristic of this study is its approach to calculating chemical metrics. Only 
substances classified as insecticides, herbicides, and fungicides were considered, and for 
risk quotients, quality criteria were filtered to include only those labeled as acutely or 
chronically toxic for invertebrates. For toxic units, the ecotoxicological endpoints were 
selected to be as close as possible to macroinvertebrate sensitivity, using D. magna as a 
reference organism (von der Ohe & de Zwart, 2013; Wei et al., 2022). Although this filtering 
may potentially penalize the possible relationship with more bioindicators, it was necessary 
given our main goal. Studies have shown that filtering specific groups of pesticides 
enhances the relationship between chemical metrics and bioindicators (Ganatra et al., 
2021; Hunt et al., 2017; Rasmussen et al., 2012). 
SPEARpesticides’ performance compared to the other bioindicators can be attributed to 
its trait-based design, which explicitly links community composition to pesticide sensitivity, 
generation time, dispersal ability, and exposure probability as noted in (Knillmann et al., 
2018; Liess et al., 2021). This specificity allowed SPEARpesticides to detect changes in 
community structure even when other environmental stressors are present, a property that 
has been observed on multiple occasions under event-driven chemical sampling (Liess et 
al., 2021; Rasmussen et al., 2013; Schäfer et al., 2011). This distinction serves to highlight 
the importance of our methodical temporal alignment in detecting relationships. It is also 
important to acknowledge that the capacity of SPEARpesticides to reflect pesticide impacts 
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is contingent not solely on its sensitivity, but also on the resolution and specificity of the 
chemical metrics employed (Leyva-Morales et al., 2024). 

5.3. Integration of Environmental Parameters in Regression Models 

Integrating environmental parameters alongside chemical metrics, supported by their 
conceptualization and previous analyses, was important to explaining the variability in the 
responses of macroinvertebrate communities to pesticide pressure, without making the 
model proposal overly complex and acknowledging the potential impact of external factors 
(Chollet Ramampiandra et al., 2023; Schuwirth et al., 2015). 
In the 3.5-days sampling period, the combination of TU-EC(mix, median), proportion of 
agricultural land use, and flow velocity consistently yielded the most robust and 
interpretable models for SPEARpesticides. This outcome highlights the ecological reality 
that both static landscape attributes and dynamic stressors jointly shape biological 
communities in agricultural streams. The negative, nearly linear effect of proportion of 
agricultural land use on SPEARpesticides aligns with trait-based theory and empirical 
evidence, reinforcing the persistent role of land use as a stressor (Liess, 2023). The 
inclusion of TU-EC(mix, median) was further justified by its specificity, directly quantifying 
invertebrate-toxic pressure from pesticides, and capturing dynamic exposure events that 
static variables cannot (de Castro-Català et al., 2016; Leyva-Morales et al., 2024; Švara 
et al., 2021). Flow velocity, although not always exhibiting a strong directional effect, 
contributed to model performance by accounting for hydrological variability that can 
influence both pesticide transport and habitat suitability for macroinvertebrates (Burdon et 
al., 2019; Rico et al., 2016). 
In the 14-days sampling period, the prominent chemical metric shifted from TUs to RQs. 
CRQ(mix, max) emerged as the most informative chemical predictor, and the relevance of 
environmental parameters, particularly flow velocity, and proportion of agricultural and 
urban land use, became more prominent than the chemical metric, as it was observed in 
other studies (Rasmussen et al., 2013; Rico et al., 2016). The 14-days sampling period, 
apparently smoothing short-term peaks in pesticide concentrations (Ashauer et al., 2020; 
Backhaus & Faust, 2012), reduced the detectability of acute exposure events and make 
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this effect comparable to the influence of spatial and land-use gradients. In this context, 
the use of a broader, more conservative chemical metric (CRQ) and its maximum value 
within the sampling period proved more effective for capturing the effect of pesticides on 
SPEARpesticides.  
The integration of environmental parameters into regression models reduced unexplained 
variance and highlighted the multi-stressor reality of stream ecosystems, where land use, 
hydrology, and chemical exposure interact to determine biological outcomes (Erasmus et 
al., 2021; Liess et al., 2016; Villeneuve et al., 2018). As alternative models we evaluated 
our best model structures without the chemical metric as a predictor leading to reduction 
in the explanatory power and, in the 3.5 days sampling period, potential overfitting of the 
environmental parameters. 
These findings underscore a methodological insight for our datasets: neither chemical 
metrics nor environmental parameters alone can fully explain variability in bioindicator 
responses. Instead, integrated models that account for both types of predictors are 
necessary to capture the complexity of ecological responses in real-world, multi-stressor 
environments (Burdon et al., 2019; Heß et al., 2024; Rasmussen et al., 2012; Rico et al., 
2016; Villeneuve et al., 2018). The approach taken here, selecting, and temporal aligning 
chemical metrics, integrating key environmental parameters, and adapting model structure 
to the characteristics of each sampling period, offers a reasonable framework for ecological 
assessment and improving the diagnostic power of both monitoring programs performed 
under the NAWA framework. 

5.4. Modeling Approaches and Interpretation 

The modeling strategy adopted in this study was intentionally flexible, reflecting the 
complexity and heterogeneity of the data as well as the need to maximize ecological 
interpretability. The assessment of transition from linear models (LM/LM) to generalized 
additive models (GAM/GAMM) was driven by diagnostic evidence, outlier sensitivity and 
modest explanatory power. While using median-based chemical metrics as predictors 
provided some robustness against outliers, linear models frequently failed to capture the 
nuanced relationships between pesticide exposure and bioindicator responses, as 
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indicated by residual diagnostics and limited explanatory power (Gotelli & Ellison, 2013; 
QCBS, 2024). 
The use of GAMs, specifically for the 3.5-days sampling period, allowed for a more data-
driven and adaptive exploration of these relationships, revealing that significant and 
ecologically interpretable associations for SPEARpesticides were more consistently 
detected with this approach (Moe et al., 2025). In the case of the 14-days sampling period, 
it was proven that implementing GAMMs did not improve the overall model performance. 
This is likely because the chemical metric in those datasets was not strong enough to 
express the variability of the bioindicator. This shows that SPEARpesticides is not sensitive 
enough for this type of sample. Nevertheless, all of the selected statistical modeling 
approaches consistently reflected the negative trend between pesticide pressure and 
sensitive macroinvertebrate taxa. However, the emergence of different metrics as primary 
predictors highlights the importance of aligning model structure and metric selection with 
the ecological question and data characteristics. 
Visual inspection of model fits and residuals was crucial for ensuring ecological plausibility, 
particularly in avoiding over-interpretation of statistically significant but biologically spurious 
patterns, an issue occasionally observed for broader indices such as GI. This emphasis 
on visual and ecological validation, alongside statistical criteria, aligns with best practices 
in ecological modeling and risk assessment (Moe et al., 2025; QCBS, 2024). 
Despite the advances provided by GAMs, the overall explanatory power of chemical 
metrics remained moderate, with a maximum of approximately 30% of SPEARpesticides’ 
variability explained in the best 3.5-days sampling period model. In this case, the 
implementation of environmental parameters proved to be of critical importance. This 
implementation led to a significant enhancement in the explanatory power of the model, 
with the proportion of variability explained rising to 60%. Additionally, it contributed to a 
reduction in the uncertainty surrounding the partial effect of the chemical metric. This 
reduction in uncertainty enabled us to articulate with an improved degree of confidence the 
number of units of the bioindicator that are diminished by an increase of one standard 
deviation in the chemical metric. This was permitted in view of the additive character of the 
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model structure that was defined, wherein the baseline levels of the other predictors and 
the intercept of each model are to be acknowledged to evaluate the predictions (QCBS, 
2024). This interpretation demonstrates the limitations of sample size, but also the 
opportunities for improving the model to take potential actions regarding the overall 
problem addressed by the thesis. A simple exercise to move one standard deviation in the 
chemical metric to determine the decrease of SPEARpesticide response demonstrates 
that "pesticide pressure" is indeed the variable to take further immediate actions, followed 
by land use, to improve the ecological status of streams, as expressed by 
SPEARpesticides through sensitive taxa. 
The levels of explained variability before and after the implementation of environmental 
variables are comparable to those reported in similar studies (Hunt et al., 2017; Liess et 
al., 2021), but it is important to recognize that achieving these results required substantial 
data harmonization, metric refinement, and flexible modeling, reflecting the challenges of 
integrating datasets with differing temporal, spatial, and methodological characteristics. 
The need for such analytical effort highlights the advantage of monitoring programs that 
coordinate chemical and biological sampling in a temporally consistent manner, as this 
alignment can enhance the detectability of stressor–response relationships and reduce the 
need for post hoc data manipulation (Spycher et al., 2018). 
In summary, the modeling approaches employed here demonstrate the value of flexibility 
and ecological reasoning in uncovering relationships between pesticide exposure and 
macroinvertebrate communities, while also illustrating the inherent limitations imposed by 
data structure and sampling design. 

5.5. Cross-Validation and Model Robustness 

The application of cross-validation (CV) and Random Forest (RF) benchmarking provided 
a transparent assessment of model robustness and generalizability, complementing the 
inferential focus of this study. While the primary goal was not to maximize predictive 
accuracy, CV results highlighted the strengths and limitations of the selected modeling 
approaches under the constraints of the datasets. 
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For the 3.5-days sampling period, both GAM and RF models demonstrated reasonable 
performance, particularly as the number of observations increased. The inclusion of the 
chemical metric TU-EC(mix, median) was vital for maintaining model stability and 
explanatory power; its omission led to reduced performance and instability. Notably, RF 
models often outperformed parametric models in predictive metrics, suggesting the 
presence of non-linear or interactive relationships that flexible, non-parametric approaches 
can better accommodate (Leigh & Datry, 2017). However, the overall consistency between 
GAM and RF results supports the adequacy of the selected GAM structure for inferential 
purposes, especially when both chemical and environmental parameters were included. 
In the 14-days sampling period, RF models outperformed linear mixed models (LMM) and 
linear models (LM), with RF achieving R² values nearly double those of parametric 
approaches. The frequent singularity of LMMs during CV underscored the challenges 
posed by limited sample size, data structure, and the inclusion of random effects. Attempts 
to model interactions or simplify the structure did not yield improvements, indicating that 
more complex relationships may exist but cannot be robustly captured with the current 
dataset (Chollet Ramampiandra et al., 2023; Leigh & Datry, 2017). 
Overall, the CV and RF benchmarking not only test the inferential findings of this thesis but 
also revealed the limitations inherent in the current dataset, such as small sample sizes, 
lack of pristine reference sites, unbalanced monitoring across streams and years, and the 
use of static abiotic variables. These insights point to the need for future studies to employ 
larger, more diverse datasets and to consider different alternatives of regression models 
to better capture the complexity of ecological relationships in stream ecosystems. 

5.6. Time Windows – Temporal Integration Effects 

The time windows, initially conceptualized to optimize the aggregation of chemical samples 
for explaining bioindicator variability, emerged as a critical factor influencing the strength 
and nature of the relationships between pesticide exposure and macroinvertebrate 
bioindicators.  
In the 3.5-days sampling period the stronger and more robust negative association 
between chemical metrics and SPEARpesticides were found in the first time-windows 
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(from 1-week to 2-months). This effect was further enhanced by the inclusion of 
environmental parameters, which allowed for a more consistent explanation of the 
variability in bioindicator responses across the exposure gradient, as seen in the partial 
effect plots. Conversely, in the 14-days sampling period, chemical metrics alone were 
insufficient to consistently explain declines in SPEARpesticides beyond one standard 
deviation of exposure. The addition of more samples and abiotic variables only modestly 
reduced model uncertainty and did not substantially improve predictive power within the 
observed data range. This pattern aligns with previous studies (Ashauer et al., 2020; 
Backhaus & Faust, 2012; Spycher et al., 2018), which have highlighted the limitations of 
chronic, composite sampling in capturing the ecological relevance of short-term exposure 
peaks.  
The temporal aggregation in the 14-day composites evens out the concentration over 
episodic toxicity events. This affects the importance of spatial and land-use variables as 
environmental gradients and shifts the explanatory power toward broader, more 
conservative chemical metrics, such as CRQ(mix, max). While this approach can improve 
model stability with a similar R² across time windows, it may also dilute the direct attribution 
of macroinvertebrate responses to specific pesticide events. This demonstrates the 
reduced sensitivity of indices like SPEARpesticides for these types of samples.  
In the CV assessment, both GAM and RF provided acceptable explanatory power and 
consistency in corroborating the findings, while LMM proved less effective. These results 
suggest that the observed improvements may be driven by the chemical exposure signal 
inherent to the sampling period to which SPEARpesticides is sensitive, rather than by the 
statistical model chosen, the amount of data, or how the data are integrated. It is important 
to note that the 3.5- and 14-days sampling periods differ in more than just temporal 
resolution. They also differ in the substances analyzed and their main sampling objective, 
as discussed in previous sections. 
These findings highlight a fundamental trade-off in ecological monitoring design: acute, 
higher-resolution sampling (3.5-days in comparison to the 14-days sample) is more 
sensitive to episodic events but may be more susceptible to noise and temporal 
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mismatches, while chronic, lower-resolution sampling offers stability at the cost of reduced 
sensitivity to acute impacts. 

5.7. Implications for Monitoring, Management, and Future Research 

First, the demonstrated specificity of the SPEARpesticides, especially when paired with 
carefully selected chemical metrics and key environmental parameters, support its 
continued use and further development as a diagnostic tool for pesticide impact 
assessment in Swiss streams. The “GI index” and “EPT richness” also showed potential 
as a supplementary indicator for pesticide-related pressure, though its broader ecological 
scope makes it less specific to this stress when using the chemical measurement from the 
composite samples. 
These results emphasize the necessity of integrating chemical and biological data streams 
into monitoring programs. Temporal alignment between chemical and biological sampling 
is particularly important to maximize the detectability of pesticide effects, especially for 
acute exposure events. 
The study also highlights the value of including key environmental parameters, such as 
proportion of agricultural and urban land use and flow velocity, in both routine monitoring 
and ecological assessment frameworks. These variables not only improved model 
performance but also provided crucial ecological context for interpreting bioindicator 
responses. The consistent influence of proportion of agricultural land use across scales 
suggests that land management practices remain a central approach for mitigating 
pesticide impacts in agricultural catchments (Ilg & Alther, 2024; Khaliq et al., 2024; Nguyen 
et al., 2023). 
Despite these advances, several limitations must be acknowledged. The reliance on 
composite chemical samples, the absence of pristine reference sites, static abiotic 
variables, and unbalanced monitoring designs all constrained the explanatory power and 
generalizability of the models. Once a sensitivity analysis of the “rare events” that 
generated that rise in the curves is performed we might be able to argue better where the 
main monitoring efforts should be addressed to clarify such specific relationship 
“SPEARpesticides and chemical metrics”, since the present analysis showed that the 
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closer the chemical monitoring to the biological monitoring is better and the aggregation of 
more data is not necessarily beneficial for the relationship. For example, event-driven, 
continuous high-resolution measurements, increasing sampling size and spatial coverage 
could provide a better alternative capturing short-term fluctuation episodes pollution events 
that current information from our databases may miss. However, the cost could be much 
higher for only one purpose  (Spycher et al., 2018). Therefore, long-term monitoring 
programs that are well-designed and capable of assessing multiple stressors, including 
those not initially targeted, are crucial for a comprehensive understanding of ecosystem 
health. Purpose-designed monitoring campaigns that harmonize chemical and biological 
sampling in time and space, and that are flexible enough to address both known and 
unknown stressors, will be especially valuable for disentangling the complex drivers of 
macroinvertebrate community change. 
On the other hand, as research on diverse modes of action expands, these may not be 
fully captured in the analysis for the Species At Risk used to determine the 
SPEARpesticides. Greater attention to taxonomic resolution is also warranted, as this 
underpins index calculations and ecological interpretation. While this study took a broad 
approach, future work would benefit from more detailed taxonomic and contaminant-
specific analyses to better understand stressor impacts on aquatic communities. 

6. CONCLUSION 

This study quantitatively evaluated the relationship between chemical metrics and the 
SPEARpesticides index, alongside other bioindicators, to evaluate how effectively these 
tools reflect pesticide impacts on macroinvertebrate communities in Swiss streams within 
the NAWA framework. 
First, the results confirm that pesticide exposure, as measured by both RQs and TUs, is 
associated with declines in sensitive macroinvertebrate taxa, most clearly captured by the 
SPEARpesticides index. Both RQs and TUs demonstrated negative associations with 
bioindicator values, but their relative performance depended on the modeling approach, 
reaching 28% and 18% of the variability explained in the 3.5- and 14-days sampling 
periods. RQs, being based on broad environmental quality criteria, performed well in linear 
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models and provided a conservative, regulatory-oriented signal. In contrast, TUs, derived 
from effect concentrations for sensitive aquatic species, proved more nuanced and 
ecologically targeted, especially when flexible, non-linear models were employed. 
Second, the integration of environmental parameters, particularly agricultural land use and 
flow velocity, improved the explanatory power of models, supporting the hypothesis that 
harmonized, multi-factor approaches more effectively capture the ecological impacts of 
pesticide mixtures than chemical metrics alone. The inclusion of other abiotic factors 
allowed for a broader and more consistent explanation of variance across the exposure 
gradient reaching around 60% and 36% of the variability explained in the 3.5- and 14-days 
sampling periods respectively, underscoring the value of integrated monitoring strategies. 
Third, the comparative analysis of acute (3.5-days) and chronic (14-days) sampling periods 
and the time windows used for chemical samples aggregation revealed their critical 
influence in the sensitivity and stability of bioindicator responses. The 3.5-days samples 
and the shorter time windows were more effective at detecting episodic pesticide events 
and yielded stronger explanatory relationships, particularly for SPEARpesticides. In 
contrast, longer, chronic sampling periods provided greater model stability but diluted 
acute exposure signals, resulting in less sensitive bioindicator responses. 
Despite these advances, a considerable amount of unexplained variance remained in all 
models. This is attributable to inherent complexities in field conditions, measurement 
limitations, the structure of composite samples, and the lack of pristine reference sites, 
factors well recognized in ecological risk assessment. The presence of rare or extreme 
events, particularly at the margins of the exposure gradient, further increased model 
uncertainty and highlighted the need for expanded data coverage and targeted sensitivity 
analyses. 
In summary, the present study demonstrates that meticulous data processing, temporal 
alignment, data integration, and careful selection of chemical metrics with bioindicators 
enhance the diagnostic power of ecological risk assessments while using the Swiss 
databases. The extant data demonstrate a robust and consistent negative relationship 
between TU-EC(mix, median) and SPEARpesticides. This relationship is indicative of 
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pesticide pressure on macroinvertebrate communities in Swiss streams. This is particularly 
relevant when employing chemical samples that are closely aligned with the biological 
monitoring, with the objective of reflecting specific episodes of pesticide exposure and 
acknowledging the multistressor reality. The findings advocate for continued refinement of 
monitoring programs, emphasizing methodological transparency, harmonization, and the 
adoption of integrated, multi-factor approaches to manage pesticide risks in freshwater 
ecosystems. 
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Figure S 1. Correlogram Abiotic factors and Bioindicators (Chemical metrics represented by TUs and RQs (max, max) and (mix, median)) in both 3.5-days (A) and 14-days (B) sampling period across time windows. 
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Figure S 2. Estimates (95% CIs) of chemical metrics used as predictors in (A) Linear Mixed Models (including “year” as random effect) and (B) Linear Models against bioindicators. 
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Figure S 3. Residual vs. Fitted values and Cook’s distance plots for SPEARpesticides (response variable) and chemical metrics (predictors) in 1-week, 2-week, and 1-year 
time windows for linear models in 3.5 days sampling period. 
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Figure S 4. QQ and Scale-Location plots for GI, EPT, and SPEARpesticides (response variables) and chemical metrics (predictors) in 1-week, 2-week, and 1-year time windows for linear mixed models in 14 days 
sampling period. 
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Figure S 5. Comparison of Generalized Additive Models (blue) and Linear Models (red) fitted across different time windows using GI as response variable. When the estimates or uncertainties for the bioindicator fall below 
zero, it is considered an ecological implausible value. 
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Figure S 6. Comparison of Generalized Additive Models (blue) and Linear Models (red) fitted across different time windows using SPEARpesticides as response variable. When the estimates or uncertainties for the 
bioindicator fall below zero, it is considered an ecological implausible value. 
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Figure S 7. Comparison of Generalized Additive Mixed Models (blue) and Linear Mixed Models (red) fitted across different time windows using SPEARpesticides as the response variable. 
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 Figure S 8. Correlogram of abiotic factors at 3.5-days and 14-days sampling periods. For practicality, only the 1-year dataset was used for this representation, as correlation values and directions were similar across 
time windows. 
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Figure S 9. Partial effect of TU(mix, median) on SPEARpesticides across 
selected time windows using GAMs. 

Figure S 10. Partial effects of proportion of agricultural land use and flow velocity on SPEARpesticides across selected time 
windows using GAMs. 
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Figure S 11. Comparison of nine linear mixed models fitted to 14-days sampling data. Model 2 was selected for further analysis and is described in the main text. Marginal significance was set as p-value < 0.1. 
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Figure S 13. Partial effects of agricultural and urban land proportion and flow velocity on SPEARpesticides across 
selected time windows using LMMs. 

Figure S 12. Partial effects of CRQ(mix, max) on SPEARpesticides across 
selected time windows using LMMs. 
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Table S 1. Description of the abiotic variables included in the study (chemical metrics and environmental variables). 
VARIABLE DESCRIPTION DIMENSION TYPE REFERENCES* 

Chemical metrics 

Risk Quotients (RQs) and Toxic Units (TUs) based on measured concentration of pesticides 
(insecticides, herbicides, and fungicides), Swiss ecotoxicological quality standards and 

ecotoxicological endpoints, calculated as 'maximum' and 'mixture' values, and represented by 
(mean, median, max) per time window. 

Chemical Dynamic 
(Burdon et al., 2019; Liess et 

al., 2021) 

Catchment area 
(m2) 

Estimation of the total area (in m2) of water bodies (including lakes) upstream the sampling 
point. 

Hydrological Static 
(BAFU, 2020; Hutter et al., 
2019; Ilg & Alther, 2024) 

Average discharge 
(m3/s) 

Annual mean modelled discharge (in m3/s) for the watercourse 'Mittlerer modellierter Abfluss'. Hydrological Static 
(BAFU, 2020; Burdon et al., 

2016) 

Flow velocity (m/s) Modelled annual flow velocity (based on stream width and slope). Hydrological Static (Khaliq et al., 2024) 

Stream 
classification 

Waterbody size classification (small 'kleines', medium 'mittel', large 'grosses') based on 
discharge. 

Hydrological Static (Ilg & Alther, 2024) 

Proportion of 
urban land use 

Proportion of the total land upstream categorized as human settlements 'Siedlungsflächen.' Land Use Static 

(Hutter et al., 2019; Ilg & Alther, 
2024; Khaliq et al., 2024; Liess 

et al., 2021) 

Proportion of 
forest land use 

Proportion of the total land upstream categorized as forested areas, unproductive areas, artificial 
meadows, permanent meadows, permanent pastures, and summer grazing area. 

Land Use Static 

Proportion of 
agricultural land 

use 

Proportion of the total land upstream categorized as other fruit crops, fruit crops aggregated, 
perennial berries, stone fruit, pears, apples, open area for production, vines, vineyards with 

natural biodiversity, and vines (region-specific biodiversity areas). 
Land Use Static 

Ecomorphology 
Classification of the stream based on water body morphology, ranging from 0 (natural or near 

natural) to 12 (unnatural or artificial). 
Morphological Static 

(BAFU, 2022; Hutter et al., 
2019; Ilg & Alther, 2024) 

Altitude (m.a.s.l.) Measure of the altitude (m.a.s.l.) at the sampling point. Spatial Static  

Stream identity Stream name where macroinvertebrate and chemical sampling occurred. Spatial Static - 
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Maximum summer 
water temperature 

(°C) 

Modelled maximum morning summer stream temperature predicted from a linear model based 
on catchment area and mean catchment elevation. 

Spatial Static (Khaliq et al., 2024) 

Season Season (spring or summer) when macroinvertebrate monitoring was performed. Temporal Static (Ilg & Alther, 2024) 

Year Year of macroinvertebrate and chemical sampling. Temporal Static (Khaliq et al., 2024) 

Average of daily 
precipitation (mm) 

Average of daily precipitation (mm) per site from 01-01-2017 to 31-12-2023, separated by 
chemical sample 

Temporal Dynamic - 

*References that have used the same or equivalent (based on our data availability) abiotic factors to be related to the bioindicators in previous studies
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Table S 2. Summary table of fitted GAMs across time windows in the 3.5-days sampling period.  
1_week 2_weeks 1_month 2_months 3_months 6_months 1_year 

Model 1*: SPEARpesticides - TU_ECmix_median +  Agriculture proportion+ Flow velocity* 
AIC 222.405 255.692 254.655 274.785 273.995 278.718 600.699 
R2 0.617 0.594 0.609 0.578 0.587 0.705 0.441 
VIF  1.026 1.027 1.03 1.036 1.04 1.034 1.024 
EDF 

       

edf_s(TU_ECmix_median) 1.786 1.752 2.164 1.873 1.868 1 2.535 
edf_s(Agricultural_area_frac 1 1 1 1 1 4.539 1 
edf_s(Flow_velocity) 3.47 3.393 3.299 3.718 3.733 3.578 3.719 
F-statistic 

       

F_s(TU_ECmix_median) 1.87 3.198 3.49 2.919 3.226 2.948 4.848 
F_s(Agricultural_area_frac) 22.613 23.248 23.895 24.981 24.832 11.436 14.68 
F_s(Flow_velocity) 6.269 7.055 7.493 7.438 7.664 10.627 11.432 
Significance (p_value) 

     

p_s(TU_ECmix_median) 0.18 0.0557 0.0434 0.0702 0.0523 0.0948 0.00351 
p_s(Agricultural_area_frac) 5.96E-05 3.34E-05 2.75E-05 1.74E-05 1.82E-05 0.000007 0.000245 
p_s(Flow_velocity) 0.00108 0.000332 0.000246 0.000209 0.000159 9.6E-06 0 
Model 2: SPEARpesticides -  Agriculture proportion+ Flow velocity 

  

AIC 211.617 249.352 249.352 278.686 278.686 279.87 589.698 
R2 0.726 0.66 0.66 0.512 0.512 0.692 0.508 
VIF  1.026 1.027 1.03 1.036 1.04 1.034 1.024 
EDF 

       

edf_s(Agricultural_area_frac 4.484 4.36 4.36 1 1 4.651 4.704 
edf_s(Flow_velocity) 2.772 2.889 2.889 3.583 3.583 3.384 3.986 
F-statistic 

       

F_s(Agricultural_area_frac) 9.287 9.14 9.14 24.386 24.386 12.235 9.28 
F_s(Flow_velocity) 8.952 9.208 9.208 6.637 6.637 9.634 13.169 
Significance (p_value) 

     

p_s(Agricultural_area_frac) 0.000033 6.32E-05 6.32E-05 1.83E-05 1.83E-05 1.11E-06 2.35E-06 
p_s(Flow_velocity) 0.000287 0.000153 0.000153 0.000462 0.000462 3.03E-05 0 
Model 3: SPEARpesticides - ARQmix_median + Agriculture proportion+ Flow velocity 
AIC 212.585 250.513 252.353 276.88 279.798 282.104 590.491 
R2 0.723 0.67 0.639 0.562 0.506 0.682 0.517 
VIF  1.03 1.006 1.095 1.127 1.159 1.132 1.005 
EDF 

       

edf_s(ARQmix_median) 1 2.515 1 2.207 1 1 2.171 
edf_s(Agricultural_area_frac 4.487 3.972 4.198 1 1 4.579 4.646 
edf_s(Flow_velocity) 2.665 2.4 2.766 3.602 3.249 3.295 3.703 
F-statistic 

       

F_s(ARQmix_median) 1.106 2.475 0.463 2.005 1.86 0.708 1.562 
F_s(Agricultural_area_frac) 8.572 7.21 8.117 24.964 18.455 9.229 6.762 
F_s(Flow_velocity) 8.951 8.514 7.741 6.642 5.267 9.082 12.775 
Significance (p_value) 

     

p_s(ARQmix_median) 0.303 0.0779 0.501 0.154 0.181 0.406 0.157 
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p_s(Agricultural_area_frac) 6.36E-05 0.000518 0.000257 1.75E-05 0.000126 9.66E-06 1.88E-05 
p_s(Flow_velocity) 0.000333 0.000999 0.000463 0.000361 0.00203 6.24E-05 0 
Model 4: SPEARpesticides - TU_ECmix_median + Ecomorphology + Agriculture + Flow 
AIC 223.786 257.849 256.799 276.883 264.754 295.774 584.082 
R2 0.623 0.586 0.599 0.564 0.685 0.571 0.561 
VIF  1.08 1.085 1.088 1.069 1.07 1.072 1.035 
EDF 

       

edf_s(TU_ECmix_median) 1.736 1.863 2.153 1.847 1 1.509 1.536 
edf_s(Ecomorphology_0_12) 1.709 1.252 1.227 1 1 1.654 2.241 
edf_s(Agricultural_area_frac 1 1 1 1 4.301 1 4.584 
edf_s(Flow_velocity) 3.481 3.287 3.265 3.665 3.683 3.969 4.082 
F-statistic 

       

F_s(TU_ECmix_median) 1.47 3.173 3.443 2.852 3.04 2.59 2.828 
F_s(Ecomorphology_0_12) 0.658 0.067 0.057 0.011 0.52 0.522 1.928 
F_s(Agricultural_area_frac) 23.251 21.11 22.536 23.686 10.514 22.676 7.263 
F_s(Flow_velocity) 5.592 6.089 6.228 6.342 7.797 8.185 11.951 
Significance (p_value) 

     

p_s(TU_ECmix_median) 0.215 0.0579 0.0485 0.0755 0.0911 0.0631 0.0495 
p_s(Ecomorphology_0_12) 0.572 0.845 0.917 0.917 0.476 0.623 0.143 
p_s(Agricultural_area_frac) 6.02E-05 6.86E-05 4.78E-05 2.73E-05 7.12E-05 3.11E-05 3.63E-05 
p_s(Flow_velocity) 0.00222 0.0017 0.000868 0.000811 0.00023 0.000105 0 

*Model described in the thesis, selected as the best GAM. 
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Link 1. Public Repository Structure and Access 

The public repository associated with this thesis is available at: [GitHub: SPEAR PUBLIC 
2025] - https://github.com/AnthonyFow/SPEAR-THESIS-2025_Public 
Repository structure: 

- /inputs 
• Abiotics_factors_41_streams_ds_prepared.rds 
• metrics_3.5d_0_R12_pp_ds.rds 
• metrics_14d_0_R12_pp_ds.rds 

- /scripts 
• bio_chem_analysis.R 
• datasets_creation.R 

- /output 
- /graphics 

• (Main thesis plots + user-generated plots) 
- /docs 

• (Detailed variable/column documentation) 
- /README.md 

Important notes: 
- The datasets provided are entirely synthetic, randomly generated to closely mimic the 

structure, column names, and approximate number of observations and streams of the 
original data. 

- These datasets do NOT contain real observations and cannot be used to reproduce 
the exact results of the thesis. 

- All code for statistical modeling and figure generation is provided and fully reproducible 
with the synthetic data. 

- Full variable documentation is available in the /docs folder. 
- This repository contains the primary analysis script used for the thesis. It is 

published to promote academic and scientific transparency. 
- For access to the original data or data preparation scripts, contact the thesis supervisor 

(Dr. Anne Dietzel, VSA; anne.dietzel@vsa.ch). 
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