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ABSTRACT

Pesticide contamination in streams poses a significant threat to aquatic ecosystems, as
evidenced by impacts on macroinvertebrate communities. This study quantitatively
evaluated whether pesticide effects over macroinvertebrate communities, indicated by the
SPEARpesticides index, relates with chemical metrics based on risk quotients (RQs) and
toxic units (TUs) using data from the Swiss National Surface Water Quality Monitoring
Program.

The SPEARpesticides index was evaluated alongside other bioindicators and related to
chemical metrics derived from 3.5- and 14-days composite samples based on pesticide
measurements. Our approach combined data aggregation, chemical metric selection and
flexible statistical modeling to examine the explanatory power and stability of RQs and TUs
as predictors in models across different sampling periods and temporal windows.

Results showed that both RQs and TUs were negatively related with SPEARpesticides,
confirming that higher pesticide pressure corresponds to declines in sensitive
macroinvertebrate taxa. However, the strength and consistency of these associations
varied: RQs achieved the highest explanatory power in linear models (R?=0.28) but lacked
temporal stability, while TUs, particularly calculated from 3.5-days composites (acute
approach), provided more consistent, though lower explanatory power (R?=0.17).
Incorporating environmental parameters such as proportion of agricultural land use and
flow velocity further improved model performance by up to (R?=0.60), underscoring the
value of integrated, multi-factor approaches. Despite these advances, substantial
unexplained variance persisted, especially at the extremes of the exposure gradient,
reflecting the complexity of field conditions, data limitations, and the challenges of
harmonizing and aligning chemical and biological monitoring.

By integrating biological and chemical metrics, this research advances understanding of
pesticide impacts on macroinvertebrate communities in Swiss streams and supports the
ongoing refinement of ecological assessment and monitoring strategies for freshwater

ecosystems.
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RESUMEN

La contaminacién por pesticidas en rios representa una amenaza significativa para los
ecosistemas acuaticos, evidenciandose en impactos sobre comunidades de
macroinvertebrados. Este estudio evalué la relacion de los efectos de los pesticidas sobre
comunidades de macroinvertebrados, a través del indice SPEARpesticides, con métricas
quimicas como los cocientes de riesgo (RQs) y unidades toxicas (TUs) utilizando bases
de datos del Programa Nacional Suizo de Monitoreo de la Calidad del Agua Superficial.
El indice SPEARpesticides se evaluo junto con otros bioindicadores y se relacion6 con
meétricas quimicas derivadas de muestras compuestas de 3.5 y 14 dias basadas en
concentraciones de pesticidas. La investigacion combin6 diferentes modelos estadisticos
de regresion para explorar el poder explicativo y la estabilidad de los RQs y TUs como
variables independientes en modelos a través de diferentes ventanas temporales.

Los resultados mostraron que RQs y TUs se asociaron negativamente con
SPEARpesticides, confirmando que una mayor exposicion a pesticidas refiere a una
disminucién de la respuesta en el indice. Los RQs alcanzaron el mayor poder explicativo
en modelos lineales (R?=0.28), pero carecieron de estabilidad a través de las ventanas
temporales, mientras que los TUs calculados de muestras compuestas de 3.5 dias
mostraron asociaciones mas consistentes pero con menor poder explicativo usando
modelos generalizados (R2=0.17). Ademas, la incorporacién de parametros ambientales
como la proporcién de uso de suelo para agricultura y la velocidad del flujo mejoré el
desempefio de los modelos hasta en un (R2=0.60). A pesar de ello, los modelos mostraron
niveles de incertidumbre considerables, especialmente en los extremos del gradiente de
exposicion quimica, lo que refleja la complejidad de las condiciones reales, las limitaciones
de los datos y los desafios de armonizar el monitoreo quimico y bioldgico.

La integracion de las bases de datos biolégica y quimica en este estudio contribuye a un
mejor entendimiento del impacto de los pesticidas sobre las comunidades de
macroinvertebrados en rios suizos y respalda la mejora continua de las estrategias de

monitoreo y evaluacion del riesgo ecoldgico en ecosistemas acuaticos.



1. INTRODUCTION

1.1.  General Background

1.1.1. Aquatic ecosystem health and micropollutant contamination

Aquatic ecosystems are critical to global biodiversity, providing essential services such as
water purification, nutrient cycling, and habitat for a wide range of species (Albert et al.,
2021; Haase et al., 2023). However, these systems are increasingly threatened by
anthropogenic pressures. By 2000, around 80% of the world’s population lived in regions
where freshwater resources were at risk due to habitat destruction, eutrophication,
excessive water extraction, and pollution (Vordsmarty et al., 2010). With an expected 26%
increase in the world's population by 2050, the situation seems to become more
complicated (FAO, 2021).

Streams, as integral components of aquatic ecosystems, are particularly important due to
their ecological roles and vulnerability to stressors. They support diverse communities,
especially benthic macroinvertebrates, which are central to food web dynamics and
nutrient cycling, and act as natural filters that break down organic matter and contaminants,
functions especially vital in agricultural landscapes (Shah et al., 2020; Yeakley et al.,
2016). Streams and their riparian zones provide essential ecosystem services such as
flood regulation, groundwater recharge, and water filtration, all of which contribute to
environmental stability at both local and global scales. Additionally, these areas enhance
ecosystem services by sequestering carbon, moderating temperatures, and buffering
against extreme weather events (Vari et al., 2022; Yeakley et al., 2016).

The health and integrity of stream ecosystems are shaped by interactions among physical,
chemical, and biological factors, all of which are influenced by anthropogenic activities
such as agriculture, urbanization, and industrial discharges (FAQ, 2021; Rasmussen et al.,
2012). Streams are especially susceptible to chemical pollutants from nearby agricultural
runoff and urban areas. Unlike larger water bodies, streams have limited dilution capacity,
so pollutants can quickly reach ecologically harmful concentrations (Morin & Artigas,
2023).



Of particular concern are micropollutants, a diverse group of chemical compounds
including pesticides, pharmaceuticals, personal care products, and heavy metals
(Ginebreda et al., 2014; Munz et al., 2017; Weisner et al., 2022). These contaminants are
notable for their persistence, potential for bioaccumulation, and ability to cause chronic or
sub-lethal effects on aquatic organisms and ecosystem processes (SETAC, 2018). For
instance, endocrine disruptors can impair fish reproduction, while heavy metals and
persistent organic chemical reduce biodiversity and alter food web dynamic, undermining
ecosystem stability (Abbasi et al., 2022; Ginebreda et al., 2014).

Research shows that micropollutant concentrations, such as those from wastewater
treatment plants, can significantly affect vulnerable species like microorganisms and
invertebrates, leading to changes in stream community structure (Burdon et al., 2019;
Munz et al., 2017; Tlili et al., 2017). The combined effect of pollutants, habitat alteration,
and climate change can further exacerbate impacts on aquatic organisms, emphasizing
the need for integrated assessment and management strategies (Beyer et al., 2014;
Ginebreda et al., 2014).

Given the centrality of micropollutants in shaping stream ecosystem health, the following
section focuses on anthropogenic pesticide pressures as a critical subset of these

contaminants.
1.1.2. Anthropogenic (pesticide) pressure and its consequences.

Anthropogenic pressures on streams have intensified in recent decades, with pesticide
contamination emerging as a particularly critical threat (FAO, 2021; Weisner et al., 2022).
Pesticides reach aquatic environments through multiple pathways, including runoff from
agricultural fields, leaching, and atmospheric deposition, as well as non-agricultural uses
such as urban landscaping and public health applications (Beketov et al., 2013; Doppler
et al., 2012, 2024). The presence of both agricultural and non-agricultural sources
complicates regulatory efforts, as cumulative impacts are often underestimated when only

individual inputs are considered.



Persistent pesticide residues are widely documented in small streams, posing significant
risks even at low concentrations (Bai et al., 2018; Liess et al., 2021). Numerous studies
have demonstrated negative correlations between pesticide concentrations and
biodiversity, especially among sensitive aquatic invertebrates that serve as key
bioindicators of ecosystem health (Beketov et al., 2013; Burdon et al., 2019; Ganatra et
al., 2021). Both chronic and acute exposures to pesticides have been shown to impair
freshwater ecosystems, resulting in the loss of sensitive species, and altered community
structures (Kumar et al., 2023; Stehle & Schulz, 2015).

The ecological consequences of pesticide contamination are multifaceted, encompassing
both direct and indirect effects in streams. Direct effects manifest at the individual or
species level, impairing physiological functions, reproduction, or survival, and leading to
marked reductions in sensitive taxa such as aquatic invertebrates, key components of
freshwater food webs (Beketov et al., 2013; Liess & von der Ohe, 2005). The loss of these
species disrupts ecological balance, reduces biodiversity, and diminishes the resilience of
aquatic systems to further stressors. Indirect effects operate at the community and
ecosystem levels, manifesting as altered predation and competition, changes in nutrient
cycling, and weakened trophic interactions due to the decline or loss of key taxa (Hou et
al., 2025; Shah et al., 2020).

Pesticide contamination can shift species composition and undermine ecosystem
functions and integrity. In lowland streams, increased toxicity from pesticide runoff has
been linked to significant reductions in species richness, with some studies reporting
losses in taxa of up to 42% of the recorded taxonomic pools (Beketov et al., 2013). Notably,
these adverse effects can occur at concentrations lower than those deemed "safe" by
regulatory frameworks, highlighting critical gaps in current risk assessments that often
focus on individual compounds rather than complex mixtures (Kienzler et al., 2016;
Schriever et al., 2025).

Moreover, the presence of pesticide mixtures in streams can produce synergistic
toxicological effects, amplifying risks beyond those predicted by single-chemical

assessments. Addressing these challenges requires robust monitoring and mitigation
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strategies, as well as a nuanced understanding of ecological impacts. This often
necessitates the integration of biological assessments with chemical analyses to delineate
the effects of pesticides and other micropollutants on stream health (Bettinetti et al., 2020;
Rico & Van den Brink, 2015). Ongoing research continues to refine models and indicators
to better assess and manage the risks posed by these contaminants (HeR et al., 2024;
Hunt et al., 2017).

1.2. Bioindicators in ecological assessment.

Biological communities are central to ecosystem health assessment because they provide
an integrated measure of ecological status over time. Unlike chemical analyses, which
offer a snapshot of contaminant levels, biological indicators can reflect the cumulative
impacts of pollution, habitat alteration, and hydrological changes on aquatic systems (de
Castro-Catala et al, 2016). Among the most informative bioindicators are
macroinvertebrates, fish and algae, whose varied sensitivities to environmental stressors
make them reliable proxies for water quality and ecosystem resilience (Herman &
Nejadhashemi, 2015; Tlili et al., 2017).

Regulatory frameworks increasingly recognize the value of biological communities for
water quality assessment. The European Union Water Framework Directive (EU WFD)
mandates the use of biological quality elements, including macroinvertebrates, fish, and
macrophytes, as part of its approach to achieving good ecological status in water bodies
(EC, 2011). This directive emphasizes the integration of hydromorphological, chemical,
and biological data to support adaptive management and restoration. Similarly, Swiss
water protection laws recommend the use of bioindicators alongside chemical metrics to
assess ecological integrity, reflecting a commitment to biodiversity conservation and
comprehensive  evaluation of  anthropogenic  pressures  (BAFU,  2013;
Gewasserschutzverordnung, GSchV, 1998). Through these frameworks, the demand for
robust bioindicator systems and standardized methodologies has grown, supporting more
effective ecosystem management (Espinar-Herranz et al., 2025; HeR et al., 2024).
Biological indices in ecological studies generally fall into three categories: those describing

basic community structure (e.g., species richness), those evaluating deviations from
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reference conditions, and those targeting specific stressors (Khaliq et al., 2024).
Macroinvertebrate-based assessments offer practical advantages: they are relatively easy
to collect and identify, and they integrate the effects of both acute and chronic pollution as
well as multiple environmental stressors over time (Ganatra et al., 2021; Hunt et al., 2017).
This makes them useful for long-term monitoring and for detecting subtle ecological

changes that chemical monitoring might miss.

1.2.1. Overview of bioindicators used in this project: SPEARpesticides, IBCH and
EPT.

Macroinvertebrate-based bioindicators such as SPEARpesticides, the Swiss Biological
Index (IBCH) with its VT (Diversity Class Index) and Gl (Indicator Group Index)
components, and the EPT richness are foundational tools in stream ecological
assessment, each offering distinct advantages and facing specific challenges. The
SPEARpesticides (SPEcies At Risk), index developed in Germany (Liess & von der Ohe,
2005) is designed to evaluate the ecological impact of organic pollutants, particularly
pesticides, on stream macroinvertebrate communities by identifying vulnerable species
based on life-history traits and pesticide sensitivity. Its foundation lies in quantifying the
proportion of “at risk” taxa within a community and linking observed declines to pesticide
pressure, even in the presence of chemical mixtures (Beketov et al., 2013; Schafer et al.,
2013; Wogram & Liess, 2001). The index has been widely applied in European and
international contexts for stream monitoring and research, detecting subtle, community-
level impacts of pesticides and supporting water management strategies (Schafer & Liess,
2013).

The IBCH (Indice Biologique Canton Helvétique or Swiss Biological Index) is Switzerland’s
standardized macroinvertebrate-based index for evaluating stream health, with the VT
measuring overall biodiversity and the Gl focusing on the abundance of key indicator taxa.
The IBCH, along with the VT and Gl, is used to monitor temporal changes and compare
ecological conditions across regions and stream types in Switzerland (BAFU, 2019, 2022).
The EPT richness, based on the presence and abundance of Ephemeroptera, Plecoptera,

and Trichoptera, is a widely used metric for evaluating stream health and water quality
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worldwide (Suhaila & Che Salmah, 2017). Its sensitivity to various environmental stressors
enables the detection and quantification of pollution severity, identification of contamination
sources, and assessment of habitat quality (Haase et al., 2023; Khaliq et al., 2024). The
EPT richness is often integrated with other indices to prioritize areas for conservation or
restoration, but it should not be used alone in watercourses with naturally low EPT taxa
richness, such as lowland rivers, large fine-substrate rivers, slow-flowing or stagnant water
bodies, or urban streams, where pollution-tolerant groups dominate (Tubi¢ et al., 2024);
instead, a multimetric approach is recommended to assess potential confounding factors
and improve the reliability and comprehensiveness of environmental evaluations (Poikane
et al., 2016; Schuwirth et al., 2015).

Despite their broad application and regulatory endorsement, the use of these
macroinvertebrate indicators faces challenges when attempting to elucidate their
relationship with chemical pressure alone due to multistressor reality. Community structure
and indicator responses can be influenced by environmental factors such as hydrology,
substrate quality, and physical habitat integrity, independently of chemical stressors
(Robinson et al., 2014; Villeneuve et al., 2018). To address these complexities,
researchers have employed advanced statistical models and multimetric approaches that
account for multiple stressors, improving the reliability and interpretive power of the
assessments (Liess et al., 2021; Tampo et al., 2021). However, careful consideration of
confounding factors remains key to their effective use (Schuwirth et al., 2015).

Case studies across Europe highlight the versatility and effectiveness of these indices in
diverse ecological contexts, facilitating both local and international initiatives aimed at

improving water quality and conserving aquatic ecosystems (Poikane et al., 2016, 2020).

1.3. Chemical metrics: Risk Quotients (RQs) and Toxic Units (TUs).

Risk Quotients (RQs) and Toxic Units (TUs) are foundational tools in aquatic risk
assessment, enabling the evaluation of ecological risks posed by chemical substances in
surface waters. RQs are typically calculated as the ratio of the measured or predicted
environmental concentration (MEC or PEC) of a chemical to its predicted no-effect

concentration (PNEC), typically derived from toxicity tests on aquatic organisms (Junghans
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et al., 2013). An RQ greater than 1 indicates a potential risk to aquatic life and warrants
further investigation or regulatory action. These metrics are integrated into regulatory
frameworks, such as the EU WFD, to guide restrictions, bans or mitigation strategies and
are applied for both acute and chronic exposure assessments (Moe et al., 2022; Peterson,
2006). In Switzerland, RQs are also routinely used in national and cantonal water quality
monitoring programs to identify priority pollutants and inform management actions
(Junghans et al., 2013; Spycher et al., 2018).

RQs are not limited to single substances; they can be extended to assess the combined
risk of multiple chemicals by summing individual risk, a method known as summations or
mixture approach (Backhaus & Faust, 2012; Wei et al., 2022). This approach is particularly
relevant for evaluating mixture effects in environments where multiple contaminants co-
occur.

TUs provide a standardized metric for assessing the risk posed by individual chemicals
and mixtures in aquatic systems. A TU is calculated as the ratio of a chemical’s
concentration in water to its effect concentration, commonly LCso or ECso, with a TU value
of 1 indicating that the environmental concentration matches the effect threshold for 50%
of test organisms (von der Ohe & de Zwart, 2013) TUs are especially valuable for
evaluating chemical mixtures, as the toxic unit summation method allows researchers to
estimate the combined toxicity of complex contaminant mixtures (Backhaus & Faust, 2012;
Ginebreda et al., 2014). Alternatively, the maximum toxicity approach, which uses the
highest TU among mixture components, is particularly relevant in acute exposure
scenarios (Hunt et al., 2017; Liess et al., 2021).

Both RQs and TUs have been applied in a range of contexts, from large-scale, long-term
monitoring to event-driven sampling following acute pollution episodes (Ganatra et al.,
2021; Hunt et al., 2017; Kienzler et al., 2019; Rasmussen et al., 2012). Their flexibility
enables researchers and regulators to tailor risk assessments to specific environmental
conditions and pollution profiles (Beyer et al., 2014; Svara et al., 2021).

Despite their widespread use, RQs and TUs face some challenges. They often do not fully

account for interactive, synergistic, or antagonistic effects within chemical mixtures, which
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can result in under- or overestimation of chemical assessment (Backhaus & Faust, 2012;
Spycher et al., 2018). Additionally, uncertainties in establishing accurate PNECs and effect
concentrations, often based on laboratory-derived data, can affect the reliability of these
metrics under field conditions (Junghans et al., 2011; Kienzler et al., 2019). To address
these challenges, there is a growing emphasis of integrating site-specific ecological factors
and combining chemical metrics with biological indices to enhance the validity and
applicability of risk assessments (Bettinetti et al., 2020; Burdon et al., 2019; Lee et al.,
2020).

As the next section will discuss, the integration of chemical metrics, such as RQs and TUs,
with biological assessment tools has been identified as a critical step for comprehensively

evaluating the complexity of ecological risks in aquatic ecosystems.

1.4. Chemical-Biological data integration and study context.

Integrating chemical and biological data is basic for a comprehensive assessment of
stream health, particularly when evaluating the impacts of pesticides and other
micropollutants. While chemical indicators, such as RQs and TUs, evaluate pollutant
concentrations and provide valuable information on potential ecological risks, they do not
directly capture the cumulative, chronic, or sublethal effects on aquatic communities. In
contrast, biological indices, especially macroinvertebrate-based metrics like
SPEARpesticides, IBCH, and EPT, reflect the combined effects of pollutants and offer a
more nuanced perspective on ecosystem integrity.

Due to differences in land use, hydrology, and natural gradients at the catchment level,
streams are inherently variable in their chemical and biological profile. Integrating both
chemical and biological data enables context-specific risk assessments that are sensitive
to these local conditions, thereby improving the ecological relevance of monitoring and
management strategies. Recent studies have integrated RQs and TUs with biological
monitoring metrics to enhance the robustness of water quality assessments. For example,
while indices like SPEARpesticides have shown negative correlations with chemical
pressures assessed through Tus. However, the integration of both types of data remains

important for further analysis, as biological responses reflect cumulative stressors and
8



recovery dynamics, while chemical metrics identify specific drives of impairment (Burdon
etal., 2019; Liess et al., 2021).

However, macroinvertebrate indices do not exclusively reflect chemical influences;
environmental variables such as temperature, flow dynamics, and habitat complexity also
play significant roles in shaping biological responses (Rico et al., 2016; Rico & Van den
Brink, 2015). This complexity underscores the necessity for multi-faceted assessment
frameworks that account for both chemical and non-chemical stressors (Haase et al.,
2023). Researchers have addressed these challenges by employing advanced
experimental designs and statistical approaches to disentangle the effects of pollutants
from other environmental factors (Epele et al., 2024; Rasmussen et al., 2012). Integrating
chemical metrics with biological indices in event-driven and long-term monitoring studies
provides critical insights into how multiple stressors interact to impact aquatic communities
across spatial and temporal contexts. This helps us better understand environmental
health and practice more informed management (Schriever et al., 2025).

Within Switzerland, this integrated approach is operationalized through the Swiss National
Surface Water Quality Monitoring Program (NAWA). NAWA includes periodic chemical
sampling and analysis of various micropollutants, which are useful for calculating RQs. It
also includes macroinvertebrate monitoring, the results of which are the main input for
bioindicators such as IBCH and SPEARpesticides (BAFU, 2019). Recent Swiss studies
have revealed connections between macroinvertebrate communities and ecomorphology,
agricultural area in the catchment, catchment area, discharge, and insecticide application
rates (Hutter et al., 2019; llg & Alther, 2024; Khaliq et al., 2024). Other studies have
examined the importance of micropollutant pressure in streams using chemical metrics
(Daouk et al., 2022; Doppler et al., 2024). Some studies have explicitly linked these
biological indicators with chemical metrics (Burdon et al., 2016, 2019; Junghans et al.,
2019; Munz et al., 2017). However, no study has explored the long-term national datasets
of micropollutants and macroinvertebrates together.

Addressing this gap, the present research aims to use the SPEARpesticides index,

alongside other bioindicators, to assess the status of Swiss streams with respect to
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pesticide contamination. This assessment leverages the Swiss micropollutant database
and macroinvertebrate monitoring data collected from 2018 to 2023, considering the
characteristics of Swiss streams and the challenges identified in recent literature (Chow et
al., 2020; Doppler et al., 2024; Spycher et al., 2018). The study adapts the concept of TUs
to align with 14- and 3.5-days sampling periods, guiding the selection of ecotoxicological
endpoints for risk metrics and enabling a direct comparison of the performance of RQs and
TUs in explaining bioindicator responses. This research applies nationally representative
data to evaluate the effects of pesticide mixtures on macroinvertebrate communities in
Swiss watercourses by combining bioindicator analysis with chemical metrics. The findings

aim to support ecological monitoring and inform risk management in Switzerland.

2. OBJECTIVES AND HYPOTHESES

21. Obijectives
2.1.1. General Objective

The general objective of this work is to quantitatively evaluate the relationship between
chemical metrics (risk quotients and toxic units based on pesticide concentrations) and
SPEARpesticides, along other bioindicators, to evaluate how effectively these
bioindicators reflect pesticides impacts on macroinvertebrate communities in Swiss

streams, considering the characteristics of the NAWA monitoring framework.
2.1.2. Specific Objectives

- Evaluate the effectiveness of risk quotients and toxic units under acute (3.5-days
samples) and chronic (14-days samples) approaches for explaining variations in
macroinvertebrate-based bioindicators.

- Investigate the influence of environmental parameters on the ability of risk quotients
and toxic units to explain changes in macroinvertebrate-based bioindicators.

- Assess the influence of sampling periods and temporal integration windows in the

relationship between pesticide exposure and macroinvertebrate bioindicators.
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2.2. Hypotheses

2.2.1. General Hypothesis

Elevated pesticide pressure, as quantified by higher RQ and TU values, will lead to a

measurable decline in sensitive macroinvertebrate taxa, resulting in lower values of

bioindicators such as SPEARpesticides. This decline is expected due to the direct toxic

effects of pesticides on sensitive taxa and the indirect alteration of community structure.

2.2.2. Specific Hypotheses

3.

Chemical risk metrics (RQs and TUs), particularly when temporally aligned to biological
sampling, will serve as robust predictors of variation of the stressor-related
bioindicators, reflecting the linkage between chemical exposure and biological effect.
With appropriate harmonization and alignment of Swiss monitoring conditions, and
accounting for key environmental variables, bioindicators more effectively capture the
ecological impact of pesticide mixtures on macroinvertebrate communities than when
only chemical metrics are used.

The strength of the relationship between chemical metrics and bioindicator responses
will vary with the sampling period and time window, with acute (3.5-days samples) and
shorter windows capturing episodic toxicity events to which sensitive indices like
SPEARpesticides are more responsive, while chronic (14-days samples) and longer
windows will reflect cumulative impacts, potentially resulting in less sensitive

bioindicator responses.

DATA AND METHODS

This study is based entirely on the analysis of existing datasets collected through national

Swiss monitoring programs. No new fieldwork or primary data collection was conducted

during this study; all results derive from the integration and statistical analysis of previously

gathered chemical and biological monitoring data. All site selection and sampling were

performed by the Swiss National Surface Water Quality Monitoring Program (NAWA); this
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study’s contribution is in the downstream integration, harmonization, and analysis of these
existing data sets.

Thus, the overall workflow of this study involved: (1) obtaining and harmonizing
macroinvertebrate and chemical monitoring data from national databases; (2) calculating
chemical metrics; (3) integrating datasets by aligning temporal and spatial sampling
events; and (4) applying statistical models to evaluate relationships between pesticide

exposure, bioindicator responses, and environmental parameters.

3.1. Data Resources and Harmonization

Two primary datasets were integrated for this study:

- Macroinvertebrate Dataset (MI-DS)

- Comprising data from 42 streams across 16 cantons, including 213 monitoring events
conducted between 2018 and 2023. Each stream was monitored at least annually, with
70% of the samples collected during spring.

- Micropollutant Dataset (MP-DS)

- Encompassing data from 53 streams in 17 cantons, derived from NAWA programs
(BAFU, 2013), spanning 2011-2023. The dataset includes approximately 10,600
samples and measurements for around 770 substances, with a focus on pesticides,
pharmaceuticals, and industrial chemicals. Chronic and acute toxicity criteria were
available for 440 substances (Swiss Centre for Applied Ecotoxicology, 2020).

To harmonize the datasets, both were prepared to be compatible in formatting, naming,

and units. As a key step, MP-DS samples were categorized by composite sampling period

(3.5-days for acute, 14-days for chronic exposure) and then temporally aligned to

macroinvertebrate monitoring events in MI-DS for sub-sequent joint analysis.

3.2. Study Area and Sampling Sites

Switzerland’s river network extends approximately 65,000 km, of which 43% have
catchments influenced by agricultural or urban sources of micropollutants, mainly
concentrated in the Swiss Plateau. In contrast, many sites with minimally expected

anthropogenic pollution are found in the Alpine zones; however, these low-impact sites
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were not included in the NAWA monitoring framework for micropollutants (Doppler et al.,
2020).
This study covers 41 streams distributed primarily across the Swiss Plateau (Figure 1),

with a few additional locations in the Jura and Alpine zones, as part of the NAWA TREND

Swiss Streams and Sampling Sites
Each site corresponds to a stream that is monitored for macroinvertebrates and chemicals.

N

47.5°N 4

47.0°N4

46.5°N 4

46.0°N 4

I . G0 km
6E 7E 8°E 9E 10°E

Type of composite samples : : :
available per Sampling Site ® 14days A 35and 14-days

Each composite sample corresponds to the chemical sample used to calculate chemical metrics.

Figure 1. Spatial distribution of the 41 streams and sampling sites considered in the study.

(BAFU, 2013). Sampling sites span an altitudinal gradient from 250 to 660 meters above

sea level.

3.3. Swiss Water Quality Assessment: Biological and Chemical Data Collection

and Calculation

The assessment of Swiss watercourses is based on micropollutants, nutrients, heavy
metals, and biological elements, with a particular focus on micropollutants and biological
diversity in small and medium-sized streams. For the purposes of this study, our focus was
on macroinvertebrate communities and pesticides. Monitoring is conducted under the
NAWA framework (BAFU, 2013) and following the Modular Stepwise Procedure (MSK)
methods (BAFU, 1998; MSK, 2025). These methods were developed collaboratively by
the Federal Office for the Environment (BAFU), the Swiss Federal Institute of Aquatic

13



Science and Technology (EAWAG), the Swiss Water Association (VSA) and the cantons

to assess different components of aquatic ecosystems.

3.3.1. Biological Component

Field sampling and data flow:
Macroinvertebrate sampling followed standardized MSK protocols (BAFU, 2019; BDM,
2021, 2022). A section of the stream is selected, and eight points are established to span
substrate and flow velocity diversity. Macroinvertebrates are collected and samples are
cleaned, preserved, and labeled for traceability. In the laboratory, specimens are sorted
and identified primarily to family level, and their abundance is recorded. All data is archived
and entered into standardized protocols for automated bioindicator calculation.
— Calculation of bioindicators:
The selection of IBCH, SPEARpesticides, and EPT as primary bioindicators follows the
rationale established in the introduction: these indices are widely used in Switzerland,
sensitive to pesticide impacts, and supported by both regulatory and research frameworks.
IBCH index:
The IBCH (Swiss Biological Index) assesses ecological status using two components:
- Diversity Class (VT value): Number of taxa (family level), adjusted for hydrological
regime and scaled from 0 to 1.
- Indicator Group (Gl value): Sensitivity of the most water quality-sensitive taxon present,
also scaled from 0 to 1.
The final IBCH is calculated as:
IBCH = 0.62 x VT value + 0.38 x GI value
Status classes are defined as: Very good (20.8), Good (0.6-0.8), Moderate (0.4-0.6),
Unsatisfactory (0.2-0.4), Bad (<0.2).
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SPEARpesticides index:

SPEARpesticides is a bioindicator designed to detect the effects of short-term, pulse
pesticide pollution in agricultural streams. It classifies species based on four key traits: (i)
their physiological sensitivity to insecticides and related compounds, (i) their generation
time, (iii) presence of aquatic stages and (iv) their capacity for migration and recolonization
(Liess, 2023). It is calculated at the family level using the latest trait database (Liess et al.,
2021). SPEARpesticides in Switzerland does not uses the normalization proposed in the
last version as it is based on German reference conditions (Knillmann et al., 2018), which
were considered as unsuitable for Switzerland.

The formula is:

=1log (4x; + 1) X y;
SPEARpesticides = L — g (i ) XY X 100
Y=1llog (4x; + 1)

Where xi: Abundance of the taxon i; yi : 1 (sensitive) or 0 (insensitive). Status classes are
defined as: Very good (>44), Good (33-44), Moderate (22-33), Unsatisfactory (11-22),
Bad (<11).

EPT Richness:

EPT richness is a widely used indicator of stream ecological quality (Tubi¢ et al., 2024),

reflecting the diversity of three insect orders: Ephemeroptera (mayflies), Plecoptera
(stoneflies), and Trichoptera (caddisflies). The number of distinct taxonomic families
belonging to each EPT was counted per sample. The total EPT richness is the sum of

these three counts.
3.3.2. Chemical component

Field sampling and data flow:

The primary sampling strategies are:

- 14-days composite samples: Continuous, time-proportional composites are used for
chronic exposure assessment. This type of sampling is mandatory to evaluate the
numerical  requirements stated in the Water Protection Ordinance

(Gewasserschutzverordnung, GSchV, 1998).
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- 3.5-days composite samples: Shorter, time-proportional, composites targeting acute
pollution events, especially during peak pesticide application (Doppler et al., 2012;
Spycher et al., 2018).

In the NAWA monitoring program, 14-days composite water samples are collected

throughout the year using automated samplers maintained at 4°C. During the main

pesticide application period (April to July), 3.5-days composite samples are also collected
from some specific streams under larger agricultural pressure to capture short-term
fluctuations and peaks. For consistency, four consecutive 3.5-days samples are averaged

to generate a synthetic 14-days value, ensuring comparability with directly measured 14-

days composites. As a result, the annual dataset comprises both measured and calculated

14-days composite samples, while 3.5-days samples are only available during periods of

expected peak pesticide concentrations and only at specific streams (Daouk et al., 2022;

Doppler et al., 2017).

Chemical analyses are performed primarily using liquid chromatography coupled with

tandem mass spectrometry (LC-MS/MS and GC-MS/MS) for the majority of substances.

For pyrethroids and some other compounds, liquid-liquid extraction (LLE) is followed by

gas chromatography with tandem mass spectrometry. Specific analytical protocols and

instrumentation may vary between years and laboratories, leading to differences in the
number of substances analyzed and their respective limits of quantification (LOQ). These
methodological details are described in Daouk et al. (2022) and Spycher et al. (2019), and
further information about the methods is available in Moschet et al. (2019) and Rosch et

al. (2019).

— Calculation of chemical metrics:

The calculation of RQs and TUs for both acute (3.5-days) and chronic (14-days) exposures

directly addresses the study’s secondary objective of comparing chemical metrics under

different temporal aggregation or time windows, as outlined in the introduction.

Risk Quotient (RQ) and Toxic Unit (TU) Approaches

To assess the broader pressure of pesticides on the streams, risk quotients and toxic units

were calculated for all substances categorized as insecticides, herbicides, or fungicides.
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These calculations were based on environmental quality criteria (EC, 2011; Junghans et
al., 2019) or critical effect concentrations (Lewis et al., 2016).
Individual RQ

RQ; = MEC;/QC;
Where MEC; is the measured environmental concentration and QCi is the relevant acute
(for 3.5-days samples) or chronic (for 14-days samples) quality criterion for calculating the
Acute Risk Quotient (ARQ) and Chronic Risk Quotient (CRQ) respectively (Bai et al., 2018;

“wn

Daouk et al., 2022; Spycher et al., 2018) for each substance “I” measured in each sample.
Itis important to remark that quality criteria were derived based on the most sensitive taxon
available for each substance, which is not always based on invertebrates (EC, 2011;
Junghans et al., 2011). It is also relevant to mention that only substances labeled as toxic
to invertebrates and with QC derived under robustness level 1 and 2 were considered for
the risk quotient calculation (Swiss Centre for Applied Ecotoxicology, 2020).

Individual TU

TU; = MEC;/CEC;
Where MEC; is the measured environmental concentration and CEGC; is the critical effect

concentration for Daphnia magna for each substance “" measured in each sample. For
acute assessment (3.5-days samples) the “Effective Concentration 50 at 48 hours” (ECso)
values were used to calculate the TU-EC. For the chronic assessment (14-days samples)
the “No Observed Effect Concentration at 21 days” (NOEC) values were used to calculate
TU-NOEC. The ecotoxicological data were sourced from the Pesticide Properties
Database (PPDB) (Lewis et al., 2016).

— Aggregation of Chemical metrics per sample:

For each sample, two aggregation approaches were applied:

Mixture Approach:

n n
ROpix = ) RQi; TUpix = ) TU;
i=1 i=1

Maximum Approach:
RQmax = max(RQl, RQz, RQS’I AL RQn)
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TUmax = max (TUy,TU,,TUs, ..., TU,,)

Where “n” is the number of substances detected in the sample.

Applying both mixture and maximum approaches allows for the assessment of cumulative
(chronic) and peak (acute) exposure scenarios, which are critical for understanding the
ecological risks posed by pesticide mixtures in running waters (Junghans et al., 2013; von
der Ohe & de Zwart, 2013; Wei et al., 2022).

Because multiple samples were collected over time at each stream, summary statistics
were calculated for each metric (mixture and maximum approaches) within the considered

time windows (explained in next section) prior to the macroinvertebrate sampling:

Mean (e'g" RQ(mix; mean), RQ(max; mean)’ TU(mix; mean)’ TU(max; mean))'
Median (e'g-a RQ(mix; median)’ RQ(max; median)’ TU(mix; median)’ TU(max; median))'

- MaXimum (e'g-’ RQ(mix; max)’ RQ(max; max), TU(mix; max)’ TU(max; max))'

3.4. Data alignment:

To relate chemical metrics to biological responses from the bioindicators values, we
implemented a temporal alignment approach: for each macroinvertebrate sampling event,
chemical metrics (Risk Quotients, Toxic Units) were summarized as the mean, median,
and maximum over seven cumulative time windows (1 week, 2 weeks, 1 month, 2 months,
3 months, 6 months, and 1 year) preceding the macroinvertebrate sampling date. For
example, the "1-week" window includes all chemical samples collected in the week prior
to each macroinvertebrate sample. These samples are used to calculate and summarize
chemical metrics, as previously outlined. The "2-weeks" window includes all samples from
the preceding two weeks, and so forth. This method allowed us to maximize the use of
available data despite the lack of perfectly time-matched chemical and biological samples.
Therefore, for each stream and macroinvertebrate monitoring, these chemical metrics,
calculated in both mixture and maximum forms, and aggregated as mean, median, and

maximum, were systematically aligned to the corresponding bioindicator values.
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3.5. Data and Statistical Analysis

Statistical analyses were designed to systematically test the relationships between
chemical pressure (as measured by RQs and TUs across sampling periods and different
lengths of the considered time window), macroinvertebrate bioindicators, and

environmental parameters.
3.5.1. Data Preparation

All numerical variables, including environmental parameters (e.g., catchment area,
discharge, land use fractions, water temperature, etc.) and chemical metrics, were
standardized (z-score scaling) to ensure comparability. Chemical metrics were log(x+1)-

transformed prior to scaling to mitigate skewness. No missing data was found.

3.5.2. Statistical and Modelling Analysis

To evaluate the relationship between chemical metrics and macroinvertebrate
bioindicators, we applied a suite of statistical models, with model selection and validation
tailored to data availability and structure for each sampling period. Importantly, each
chemical metric (RQmix, RQmax, TUmix, and TUmax) was evaluated individually as a sole
predictor in separate models for each data subset defined by time window, isolating and

assessing the specific effect of each chemical metric on bioindicator responses.
3.5.3. Modeling approach:

We began by calculating Spearman rank correlations to assess initial associations
between chemical metrics and bioindicators across all time windows and sampling periods.
For regression analyses, we applied linear models (LM), generalized additive models
(GAM), linear mixed-effects models (LMM), and generalized additive mixed models
(GAMM), incorporating year as a random effect where appropriate. The choice of modeling

approach was guided by both data characteristics and model diagnostics:
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- LMMs were prioritized for datasets where repeated measurements across years could
be leveraged, with year included as a random effect to account for temporal structure.
- GAMs and GAMMSs were used primarily when linear models showed poor fit or violated
assumptions (e.g., non-linearity, heteroscedasticity), allowing for flexible, data-driven
modeling of potentially complex relationships.
Model assumptions (normality, homoscedasticity, linearity, and outliers) were checked via
residual diagnostics and Cook’s distance. Model selection was mainly guided by
explanatory power, Akaike’s Information Criterion (AIC), and ecological plausibility.
To assess model robustness and potential overfitting, we performed cross-validation (CV)
for all main models. Five-fold CV was used for both sampling periods due to limited sample
size. As an additional benchmark and to test for potential non-linear or interactive effects
not captured by parametric models, we included Random Forest (RF) regression in the CV
framework. However, the primary purpose of RF was not predictive optimization, but rather
to provide a flexible, non-parametric reference for model comparison. Model performance
was evaluated using cross-validated root mean squared error (RMSE) and R
Conceptualization for the implementation of abiotic factors in statistical models
In this research, abiotic factors are divided into two main categories: chemical metrics (e.g.,
RQs and TUs) and environmental parameters (e.g., agricultural land use, water
temperature, etc.). To avoid confusion, we refer to the latter group as environmental
parameters throughout the document.
Environmental parameters were grouped into five major categories: land use, spatial,
hydrological, morphological, and temporal. Due to their slow-changing nature and data
limitations, most variables were treated as temporally static, with 2023 values used as
proxies across all years (Table S1). Flow velocity and water temperature were modeled
from static landscape features (Khaliq et al., 2024) and thus also treated as static.
Precipitation, although dynamic, was not retained in final models due to lack of significant
effect.
Candidate models were initially developed to include at least one representative variable

from each environmental parameter, with year included as a random effect where feasible.
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Implementation of environmental parameters and final model selection was guided by
ecological plausibility, correlation and principal component analysis, and variance inflation
factors, resulting in a parsimonious model structure that included the most relevant
chemical metric, proportion of agricultural land use, and flow velocity, with slight variations

depending on the sampling period.
3.5.4. Interpretation and Reporting

Results are presented as correlation coefficients, regression coefficients, and 95%
confidence intervals. Vertical forest plots visualize effect sizes across time windows,
regression plots illustrate key relationships and partial effects between variables, cross-
validation values assess model performance, and PCA biplots display the multivariate data
structure. All analyses were conducted in R (v4.4.2) using multiple packages; the code is
available in the Supplementary Information (Link 1). Only models with significant or
marginally significant results (p < 0.10) and/or superior predictive performance (as
indicated by cross-validated RMSE and R?) were retained for primary interpretation across

time windows and modelling approaches, taking ecological plausibility into account.
4. RESULTS

41. Overview of Data and Sampling

A total of 41 streams were included in the study, with data collected over six years (2018-
2023). Macroinvertebrate data were available from 195 sampling events, unevenly
distributed across streams and years. For chemical analysis, composite water samples
were collected using either 14-days or 3.5-days sampling periods, depending on the site
and year. The 14-days composite samples were collected systematically throughout the
year at all sites, as part of the standard monitoring protocol. In contrast, the 3.5-days
composite samples were targeted primarily at sites known or suspected to be impacted by
pesticide use, allowing for higher temporal resolution, and targeted analysis of specific

compound groups, such as pyrethroids.
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The numbers in Table 1 reflect the total number of observations across all sites and years
for each time window, not per site. Temporal alignment of chemical and biological data
revealed that, for the 3.5-days sampling period, 22 streams had micropollutant data
available within 1-week to 1-year prior to macroinvertebrate monitoring, while for the 14-

days sampling, all 41 streams were represented in the 1-year window.

Table 1. Number of observations per time window and sampling period. The numbers represent the total observations across all 41 streams
and all years for each time window.

3.5-days sampling

1-week 2-weeks 1-month  2-months  3-months  6-months 1-year

period
Macroinvertebrates
monitaring 34 39 39 42 42 45 92
Streams 13 13 13 15 15 16 22
Chemical samples 69 145 293 567 848 1115 1854
Considered substances 73 73 73 74 74 74 74
Range of years 2019 - 2023
14-days san:s::gg 1-week 2-weeks 1-month  2-months  3-months  6-months 1-year
Macroinvertebrates
monitoring 111 177 183 185 185 194 195
Streams 38 40 40 40 40 41 41
Chemical samples 123 226 438 831 1171 2054 3281
Considered substances 109 110 110 110 111 111 111
Range of years 2018 - 2023

4.2. Exploratory Analysis

4.2 1. Correlation: Bioindicators and Chemical Metrics

As shown in Figure S1, Spearman correlation matrices revealed negative associations
between chemical metrics and bioindicators, especially for SPEARpesticides and Gl. In
the 3.5-days sampling period dataset, SPEARpesticides correlations ranged from -0.22 to
-0.61, and Gl correlations ranged from -0.21 to -0.45. In the 14-days sampling period
dataset, SPEARpesticides correlations ranged from -0.16 to -0.41, Gl correlations ranged
from -0.18 to -0.44, and IBCH correlations ranged from -0.14 to -0.17. EPT showed
negative correlations ranging from -0.33 to -0.38 and from -0.15 to -0.17 in the 3.5-days
and 14-days sampling datasets, but only for one time window. The VT index did not show

significant or consistent correlations over time windows.
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4.2.2. Principal Component Analysis of Abiotic Factors

Principal Component Analysis (PCA) per sampling period in selected time windows
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Figure 2. PCA-Biplot for both sampling periods across 1-week, 2-months and 1-year time windows (Each abiotic factor belongs
to one dimension, while magnitude reflects each variable’s loading in the PCA).

Principal component analysis (PCA) was used to reduce the dimensionality of the
environmental dataset and to identify the main gradients structuring abiotic conditions
across sampling periods and time windows. This approach clarifies which factors most
strongly differentiate stream environments as more streams and chemical samples are
included across time windows, facilitating the identification of the most pertinent
environmental variables for subsequent modeling.

PCAwas conducted for each time window and for both sampling periods (Figure 2). Since
macroinvertebrate monitorings are related to specific streams, increasing the time window
results in the inclusion of more streams and chemical samples. Except for chemical
metrics, all abiotic factors were static across years, reflecting their spatial nature and data
constraints.

For static variables, values of 2023 were used as proxies, so differences across time
windows primarily reflect the addition of chemical data and sites. We focus on three main
time windows for description, 1-week, 2-months, and 1-year, selected based on the

frequency of monitoring (Table 1). The environmental variables were categorized into five
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dimensions (1) Land Use in the catchment: proportions of agricultural, forest, and urban
land use upstream of the sampling point, (2) Spatial: modelled maximum summer water
temperature (°C), altitude (m.a.s.l.), (3) Hydrological: modelled flow velocity (m.s ), annual
average modeled discharge (md.s), (4) Morphological: ecomorphology (classification
based on water body morphology, ranging from 0 (natural) to 12 (unnatural)), and (5)
Temporal: year of sampling.

In both the 3.5- and 14-days sampling periods, the first principal component (PC1)
consistently reflected an "agricultural pressure" gradient, defined by high loadings for
agricultural land proportion and chemical metrics, opposed by forest land proportion and
flow velocity. This second association between forest and flow velocity likely represents a
gradient of naturalness and hydrological regime. Conversely, urban land proportion and
ecomorphology formed a distinct anthropogenic axis, particularly in the 14-days sampling
period. This highlights the influence of urbanization on stream morphology and habitat
quality.

The magnitude of each variable’s loading in the PCA reflects its relative contribution to the
principal components, with higher absolute values indicating a stronger influence on the
environmental gradient (Figure 2). As the time window increased, the association between
chemical metrics and proportion of agricultural land use weakened, but the influence of
land use and hydrology remained consistent. Overall, these results demonstrate that
agricultural activities, hydrological and forest characteristics, and urbanization are the
dominant forces structuring the abiotic environment in these streams, across the

evaluation of the sampling periods and time windows.

4.3. Bioindicator Response to Chemical Metrics

4.3.1. Linear Models (LM/LMM)
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3.5-days Sampling Period

In the 3.5-days sampling period, the relationship between pesticide pressure and
macroinvertebrate bioindicators was assessed using both LMMs and LMs. LMMs initially
included “year” as a random effect; however, many models exhibited singular fits (i.e., the
model could not reliably estimate variance for the random effect, likely due to the limited
sample size or low variation in “year”; see Figure S2-A). Consequently, LMs were used as

the primary approach, providing robust estimates and confidence intervals (Figure 3).

Estimate, Confidence Intervals, and Adjusted R? by grouping, Response, and time windows

Linear Models: SPEARpesticides ~ Chemical metrics (3.5 days) Linear Models: GI_VALUE ~ Chemical metrics (3.5 days)
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Each chemical metric was log1p-transformed and scaled.
Facet columns represent the time windows, facet rows show the aggregation approach (Mixture or Maximum) of each chemical metric,
and the x-axis displays the statistical representation (Mean, Median, Maximum) of each chemical metric.

Figure 3. Model Estimates (slopes), Confidence Intervals, and Adjusted R? for the Linear Models in the 3.5-days sampling period.
Only the slopes of the models that are at least marginally significant (p < 0.1) are shown.

All models that reached at least marginal significance (p < 0.1), including those fully
significant (p < 0.05), demonstrated negative estimates. Thus, negative associations for
both SPEARpesticides and Gl, indicating that increased pesticide exposure corresponded
to lower values of these bioindicators. Significant negative effects (confidence intervals not
crossing zero in Figure 3) were detected for specific chemical metrics. Particularly for the
mixture-median representation of the TU-EC and ARQ metrics at several time windows.
No significant estimates were identified for IBCH, VT or EPT over the time windows in this

sampling period (Figure S2-B).
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The explanatory power of these models, as indicated by adjusted R? ranged from 0.03 to
0.15 for SPEARpesticides and from 0.05 to 0.09 for GI (Figure 3). Generally, ARQ-based
metrics provided higher explanatory power than TU-based metrics for both bioindicators.
Nevertheless, although the LMs provided a reasonable fit overall, residuals versus fitted
value plots showed that the linearity assumption was only partially met for most models.
Moreover, outliers disproportionately influenced the statistical representations of chemical
metrics, while the 'median" was occasionally more robust, though it did not consistently
mitigate the influence of outliers across all metrics (Figure S3).

Given these limitations, including non-linearity, and modest explanatory power, we
proceeded to explore non-linear relationships using generalized additive models (GAMs).
14-days Sampling Period

For the 14-days sampling period, LMMs were fitted to assess the relationship between
pesticide pressure and macroinvertebrate bioindicators (Figure 4). The relatively large
number of observations for these models (Table 1) prevented singular fits and contributed
to model stability.

Across all chemical metrics, the direction of effect (slope) was consistently negative,
indicating that higher pesticide concentrations were associated with lower bioindicator
values. Effect estimates and confidence intervals for each bioindicator and chemical metric
are illustrated in Figure 4. Conditional R? values indicated varied explanatory power: 0.59
- 0.64 for EPT, 0.11 - 0.18 for SPEARpesticides, 0.04 - 0.10 for Gl and IBCH. Marginal R2
values, reflecting the variance explained by chemical metrics alone, were highest for
SPEARpesticides and Gl, especially in shorter time windows. The random effects
increased explanatory power for SPEARpesticides by approximately 2- to 5- fold, and for
EPT by approximately 22- to 60-fold.
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Across all statistical representations (mean, median, maximum), effect sizes and
significance levels were similar. The “mixture” approach was found to be sufficient, and
CRQs were the most prominent chemical metrics. Despite the consistent negative
relationships, the overall explanatory power of these models was limited. It is important to
note that model assumptions were not fully met for Gl or EPT, and only marginally for
IBCH, exhibiting non-normal residuals and heteroscedasticity (Figure S4). Therefore,
results for these indices should be interpreted with caution, and primary emphasis should

be placed on the more robust findings for SPEARpesticides.

Estimate, Confidence Intervals, Conditional R* and Marginal R? by grouping, Response, and Time Windows
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Figure 4. Model Estimates, Confidence Intervals, Conditional and Marginal R? for the Linear Mixed Models in the 14-days sampling.

Only the slopes of the models that are at least marginally significant (p < 0.1) are shown.
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4.3.2. Non-linear Modeling of Pesticide-Bioindicator Relationships

3.5-days sampling period: Generalized Additive Models (GAMS)

We fitted GAMs to capture potential nonlinear relationships between pesticides pressure
and bioindicator response. GAMs yielded a wider range of significant models for ARQ and
TU-EC metrics across all time windows for SPEARpesticides and Gl (Figures S5 and S6).
However, in the 1-week window, although some models showed reasonable fit (R2= 0.14
- 0.20), the estimated values for SPEARpesticides or Gl were inconsistent and often
ecologically implausible based on the response of the bioindicator. This shows the
importance of not relying solely on fit metrics, particularly at the extremes of the predictor
range, and underscores the need for careful graphical interpretation.

In the 2-weeks window, graphical inspection revealed that GI's fit was largely driven by the
smoother’s adaptation to a few extreme values at high pesticide pressure, with a clearer
negative trend only apparent at lower exposure levels (Figure S5). For SPEARpesticides,
the negative trend was clearer and more consistent, particularly for ARQ(mix, median) and

TU-EC(mix, median), even in the presence of outliers (Figure 5).
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Figure 5. Comparison of Linear (red line) and Generalized Additive Models (blue line) for SPEARpesticides vs. TU(mix, median)
and ARQ(mix, median) in 2-weeks, 3-months, and 1-year time windows.
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From the 1-month to the 6-months windows, similar patterns persisted (Figures S5 and
S6). For example, in the 3-months window, both “max” and ‘median” statistical
representations were significant or marginally significant for SPEARpesticides. ARQ-
based metrics yielded a marginally significant and negative relationship, with values
matching those from their LM counterparts (R?=0.15, p = 0.06) (Figure 5). In these cases,
the effective degrees of freedom (EDF) were equal to one, indicating that the GAMs
recognized and retained the linearity of the relationship when appropriate. TU-EC(mix,
median) showed improved explanatory power from LM (R? = 0.06) to GAM (R =0.13) in
the same window (Figure 5). In contrast, Gl models became less plausible, highlighting
their limited sensitivity to chemical metrics (Figure S5).

In the 1-year window, no significant GAM was obtained for Gl (Figure S5). For
SPEARpesticides, TU-EC(mix; median) demonstrate an increased explanatory power
from LM (R? = 0.04) to GAM (R? = 0.14). Other significant chemical metrics, such as
ARQ(mix; median), had R? below 0.10. Nevertheless, a negative trend between
SPEARpesticides and chemical metrics remained evident (Figure 5).

Overall, the explanatory power for SPEARpesticides was improved by GAMs (R? = 0.03-
0.15 in LMs and 0.10-0.28 in GAMs). However, chemical metrics still explain only a
moderate proportion of the variability in the bioindicator for most GAMs, the presence of
an isolated observation above 4 units (in log1p and scaled units) caused the curve to rise
and uncertainty to increase at higher pesticide concentrations. TU-EC metrics, however,
appeared less affected by this outlier, with the negative relationship most apparent where
observations were densely aggregated and prediction intervals were narrower. Across all
time windows, SPEARpesticides was more consistently and robustly explained by TU-EC
and ARQ metrics in their (mix, median) representations compared to Gl (Figures S5 and
S6). Even when models were statistically significant and exhibited high explanatory power,
graphical evaluation was essential to check direction and ecological plausibility of the

relationships.
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14-days sampling period: Generalized Additive Mixed Models (GAMMs)

Following the LMM analysis of the 14-days sampling period, which revealed that EPT was
primarily explained by the random effect (year) and that SPEARpesticides was best
explained by the fixed effects (chemical metrics), we further explored potential nonlinear
relationships using GAMMs, motivated by the observed deviations of the model
assumptions, as well as the pronounced influence of the random effect.

GAMMs were fitted with year as a random effect. For SPEARpesticides, the difference
between marginal and conditional R? remained similar to the LMMs, and the overall
explanatory power did not increase. Model selection criteria (AIC) was higher for the
GAMMs than for the LMMs, with differences of 4-6 units. This indicates no meaningful
advantage in model complexity (Figure S7).

For IBCH, GI, and EPT, GAMMs failed to resolve the diagnostic issues observed in LMMs.
QQ plots continued to display step-like patterns, and residual plots showed persistent arcs
or systematic deviations, particularly for Gl and IBCH (Figures S4). EPT exhibited a slight
improvement in residual distribution, but not in AIC or model interpretability. Fitted smooth
terms for Gl, IBCH and EPT were flat or lacked a discernible trend across chemical metrics.
GAMMSs did not improve model fit, explanatory power or performance for any bioindicators
compared to LMMs. Marginal and conditional R? values and fitted relationship shapes
remained largely unchanged. For SPEARpesticides, results were consistent enough with
LMMs; for GI, IBCH and EPT, models were limited by assumption violations and lack of

clear association with chemical metrics.
4.3.3. Synthesis and further modeling

Given the contrasting performance of statistical models across sampling periods, we
addressed our analytical approach to best capture the relationships between pesticide
exposure and bioindicator response. For the 3.5-days composite samples, GAMs were
employed due to evidence of non-linearity, and outlier influence. The improved explanatory
power and interpretability observed with this flexible modeling framework also led us to

select it over LMs. In contrast, for the 14-days sampling period, LMMs proved most
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appropriate, as the relationship between chemical metrics and bioindicators, particularly
SPEARpesticides, was adequately described by linear associations, and the inclusion of
random effects accounted for substantial variance.

These differences in model fit likely reflect both the temporal resolution of the chemical
data and the ecological processes captured at each sampling scale even when being

composite samples.

4.4. Integration of Environmental Parameters

4.4.1. Selection of Environmental Parameters for Integrated Regression Modeling

The integration of environmental parameters into our regression models was motivated by
two main considerations. First, initial analyses using only chemical metrics as predictors
for SPEARpesticides revealed limited explanatory power, suggesting that other sources of
variability were influencing macroinvertebrate responses. Second, our PCA results
highlighted key environmental gradients, especially those related to proportion of
agricultural land use (associated with pesticide pressure), hydrology, and urbanization.
This underscored the need to move beyond a purely chemical perspective and to account
for the broader environmental context in which pesticide pressure and biological responses
occur.

The potential relationships between each parameter, and its influence on pesticide
pressure and macroinvertebrate response, were conceptually evaluated. For instance,
water temperature is modeled by altitude and catchment area; flow velocity is determined
by slope, discharge, and width (Khaliq et al., 2024); and discharge is a function of
catchment area (BAFU, 2020). These inherent relationships required caution to avoid
collinearity in our model construction. Notably, a conceptual link exists between proportion
of agricultural land use and chemical metrics, as greater agricultural land use increases
the probability of pesticide application and runoff, a relationship acknowledged in the
definition of SPEARpesticides (Liess et al., 2008, 2021). Similarly, hydrological variables

such as discharge and flow velocity are interrelated, and their influence on pesticide
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concentrations is mediated by both dilution and dispersal processes, as well as by the
timing and nature of runoff events (Doppler et al., 2012).

To empirically assess these relationships, we conducted correlation analyses between
SPEARpesticides and abiotic factors for each time window on the 3.5-days sampling
period. Consistent negative correlations were observed between SPEARpesticides and
both proportion of agricultural land use and chemical metrics, while moderate positive
correlations were found with forest proportion, altitude, flow velocity, and discharge (Figure
S1-A). The same correlation structure was observed for the 14-days sampling period, with
the addition of urban proportion and ecomorphology showing negative associations with
SPEARpesticides, consistent with PCA results (Figure S1-B).

Correlation analyses among abiotic factors revealed strong associations within each
dimension (e.g., among land use or hydrological variables) and modest positive
correlations between proportion of agricultural land use and chemical metrics, as well as
negative associations between agricultural and forest proportions, and between urban and
forest land uses (Figure S8). These findings suggest that the positive relationship between
SPEARpesticides and forest proportion may reflect the spatial opposition to proportion of
agricultural land use, rather than a direct causal effect.

Based on these insights, we selected proportion of agricultural land use, chemical metric,
and flow velocity as variables for regression modelling in the 3.5-days period, as they
loaded strongly on the main axes in the PCA and defined clear environmental gradients.
For the 14-days period, we chose proportion of agricultural and urban land use, chemical
metric, and flow velocity, as these variables were consistently important across time
windows and could capture chemical and spatial drivers of macroinvertebrate community
structure.

Finally, this approach aligns with our second specific objective: to evaluate the influence
of environmental parameters on the relationship between chemical metrics and biological
response. At this stage, SPEARpesticides stood as the only bioindicator that exhibited
consistent responses to chemical metrics in prior analyses. Consequently, it was the

exclusive bioindicator utilized in the subsequent analyses.
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4.4.2. Integration of Environmental Parameters in the Regression Models

3.5-days Sampling Period

We assessed the impact of pesticides and abiotic factors on macroinvertebrates, using
GAMs and SPEARpesticides as the bioindicator. The predictors included TU-EC(mix,
median) and ARQ(mix, median), alongside proportion of agricultural land use and flow

velocity.

Model Selection and Diagnostics

Initial models incorporated TU-EC(mix, median), proportion of agricultural land use, and
flow velocity. In the Table S2, which presents the results of the GAMs across all the time
windows, the models demonstrated robust explanatory power, with adjusted R? values
above 40% and reaching up to 70%. Model selection criteria, as indicated by AIC values,
remained relatively stable across time windows (ranging from 222 to 278), but increased
substantially in the 1-year window (AIC = 600), suggesting a decrease in model parsimony
for longer integration periods.

Statistical significance was consistently observed for proportion of agricultural land use
and flow velocity (p < 0.05), while TU-EC(mix, median) was significant or marginally
significant in most windows (except at 1 week, where p = 0.18, still indicating a potential
effect). The effective degrees of freedom (EDF) for TU-EC ranged between 1 and 2.5,
indicating a predominantly linear or gently curved relationship. For proportion of agricultural
land use, EDF values ranged from 1 to 4.5, with higher values (and more complex, “wiggly”
fits) observed when TU-EC’s EDF was 1, and vice versa. Flow velocity consistently
exhibited EDF values around 4. F-statistics across all models ranked the predictors in the
following order of explanatory strength: proportion of agricultural land use > flow velocity >
TU-EC(mix, median).

Visual and Ecological Interpretation

Visual inspection of the fitted GAMs (Figure 6) revealed that proportion of agricultural land
use exerted a linear and consistently negative effect on SPEARpesticides, underscoring
their role as a dominant static environmental parameter. TU-EC(mix, median) also showed

a negative association, with a smoother fit and reduced uncertainty intervals compared to
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models including only the chemical metric (Figure S9). Flow velocity, while a significant

predictor, did not display a strongly positive trend; its inclusion nonetheless improved

Partial Effects of GAMs on SPEARpesticides

SPEARpesticides ~ s(Agricultural proportion) + s(Flow velocity) + s(TU_ECmix) for each time window
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Figure 6. Partial effects of TU-EC(mix, median), proportion of agricultural land use, and flow velocity on SPEARpesticides across
selected scenarios (see row labels) using multivariate GAMs. The values (R?, AIC, and intercept) for each model (facet row) are
displayed in the TU box because they are identical for the other two predictors, as they belong to the same model.

model fit and reduced uncertainty, reflecting its relevance as a hydrological driver. This
suggests that the inclusion of both proportion of agricultural land use and flow velocity
helps absorb unexplained variance and provides a more stable estimate of pesticide
pressure effects.

Alternative models, including only flow velocity or proportion of agricultural land use,
yielded lower explanatory power, and produced unstable fits. The closest alternative in
terms of AIC and R? was the model with proportion of agricultural land use and flow
velocity, but without the chemical metric. However, the EDF for proportion of agricultural
exceeded 4.3, suggesting overfitting (Table S2, Figure S10).

Additional predictors (e.g., urban proportion and ecomorphology) were tested but did not
meaningfully improve the model or provide interpretable relationships with

SPEARpesticides. Similarly, substituting ARQ(mix, median) for TU-EC(mix, median)
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resulted in non-significant effects and only a weak negative trend, suggesting that TU-EC
is @ more sensitive and ecologically relevant indicator of pesticide pressure in this context
(Table S2). Other bioindicators did not yield plausible or interpretable results and were
therefore not considered further.

14-days Sampling Period

We constructed a series of LMMs using proportion of agricultural and urban land use, and
flow velocity, alongside the chemical metric CRQ(mix, max). The choice of this chemical
metric was supported by our observation that a more specific chemical signal was
necessary to capture the impact of pesticide pressure in composite samples where peak

pesticide events are likely smoothed. This concept is further explained below.

Model Selection and Diagnostics

Nine candidate models were evaluated, each representing different combinations of the
main abiotic gradients and the chemical metric (Figure S11). Models containing only one
abiotic variable plus the chemical metric consistently exhibited low explanatory power, with
adjusted R? values below 20%. The best-performing model included proportion of
agricultural and urban land use, flow velocity, and CRQ(mix, max) across all time windows
(Model 2 in Figure S11). This model demonstrated superior parsimony (lowest AIC by 5-
6 units compared to the next best model) and higher explanatory power (marginal R?
always 2-3% above the second-best model).

The explanatory power of the selected model was consistent across time windows, with
marginal and conditional R? values nearly identical, ranging from 0.29 and 0.30 in the 1-
year window to 0.40 and 0.42 in the 1-week window, indicating that the inclusion of
environmental parameters effectively reduced the influence of the random effect (year).
This contrasts with models considering only chemical metrics, where the random effect
accounted for a much larger proportion of the explained variance.

The statistical and absolute importance of the predictors, based on their estimates
(slopes), followed a consistent order: agricultural proportion > flow velocity > urban
proportion > chemical metric. CRQ(mix, max) always exhibited a negative estimate, with

effect sizes ranging from -0.3 (1-year window) to -1.48 (3-months window). The effect of
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the chemical metric increased from the 1-week to the 2-month window (Figure S11), then
gradually decreased as the time window lengthened, mirroring the pattern observed in the
PCA, where the chemical metric’s relevance diminished as more samples and spatial
variability were included.

Removing the chemical metric resulted in a 2-3% reduction in R?, with minimal change in
AIC (Figure S13), while attempts to add random slopes or interactions did not improve
model fit due to limited observations per year.

All predictor estimates were ecologically plausible based on the effect over
macroinvertebrate communities: negative for the chemical metric, proportion of agricultural
and urban land use, while positive for flow velocity. This aligns with the expectation that
increased pesticide pressure and anthropogenic land use reduce macroinvertebrate
community integrity, while greater flow velocity may reflect more natural or less impacted

stream conditions as shown in the PCA analysis.
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Visual and Ecological Interpretation
Partial Effects of LMM on SPEARpesticides

Effects centered by subtracting the model intercept.
SPEARpesticides ~ Agricultural proportion + Urban proportion + Flow velocity + CRQ(mix,max) + (1|YEAR) for each time window
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Figure 7. Partial effects of CRQ(mix, max), proportion of agricultural and urban land use, and flow velocity on SPEARpesticides
across selected scenarios (see row labels) using multivariate LMMs. The values (R?, AIC, and intercept) for each model (facet row)
are displayed in the CRQ box because they are identical for the other two predictors, as they belong to the same model.

Visual inspection revealed (Figure 7) that the inclusion of environmental parameters led to
a reduction in the uncertainty around the estimated effect of the chemical metric CRQ(mix,
max) in all the time windows (Figure S12). In contrast, the uncertainty associated with the
environmental parameters themselves did not show a comparable reduction, and their
effect estimates remained relatively stable and robust across time windows (Figure S13).
This suggests that, while environmental parameters are essential for capturing the broader
environmental context and improving model fit, their predictive precision does not benefit

as markedly from the integrated model as does the chemical metric in this context.

4.5. Cross-Validation and Predictive Performance

To further assess the robustness and generalizability of our selected models, we
conducted 5-fold CV for both the 3.5-days and 14-days sampling periods. In addition to
our best models (GAM, LMM), we implemented Random Forest (RF) as a non-linear,
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flexible benchmark to test whether more complex relationships or interactions might exist
between SPEARpesticides and the predictor variables. It is important to note that the
primary aim of this thesis is to infer relationships between pesticide pressure,
environmental parameters, and bioindicators, rather than to maximize predictive accuracy.
Nevertheless, CV offers a transparent assessment of model stability and helps identify

potential limitations in model structure.
4.5.1. 3.5-days Sampling Period

For the 3.5-days period, the CV was performed as follows: SPEARpesticides ~ TU-
ECmix,median + proportion of agricultural land use + flow velocity, using GAM, LM, and
RF approaches (Figure 8). In the 1-week window, the GAM produced a negative R?, likely
due to the small sample size (n = 30), but from 2 weeks onward, both GAM and RF yielded
plausible results. Across most time windows, RF and GAM outperformed LM in both RMSE
and R?, particularly in larger datasets (e.g., 3-6 months, 1 year). This suggests that flexible,
non-linear approaches can better capture the relationships in the data when sufficient
observations are available.

When the chemical metric was removed, the stability and explanatory power of the GAM
decreased, especially in intermediate time windows. Additionally, when using only
chemical metrics, both GAM and RF produced implausible results (negative R? across all
time windows), highlighting the relevance of integrating both chemical and environmental

parameters.

4.5.2. 14-days Sampling Period
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For the 14-days period, the model: SPEARpesticides ~ CRQmix,max + proportion of
agricultural land use + urban proportion + flow velocity, was evaluated using LMM (with
year as a random effect) and RF (with year as a predictor) (Figure 8). However, the LMM
was singular in 6 out of 7 time-windows, likely due to the reduced sample size in each CV
fold and the complexity of the model. Simplifying the model by using LM (with year as a
fixed effect) or including interaction terms (e.g., Proportion of agricultural land use x
Chemical Metric) did not improve performance. In all cases, RF outperformed the
parametric models, with R? values around 0.6 across time windows, compared to 0.3-0.4
for LMM/LM (Figure 8). This suggests the presence of complex, non-linear, or interactive
effects that cannot be robustly identified with the current dataset and parametric

approaches.

Model Validation Metrics Across Sampling Periods and Time Windows

3.5-DAYS: SPEARpesticides ~ Agriculture proportion + Flow velocity + TU_ECmix_median
14-DAYS: SPEARpesticides ~ Agriculture proportion + Urban proportion + Flow velocity + CRQmix_max + (1|Year)
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Figure 8. Cross-Validation Performance of the Linear Model, Linear Mixed Model, Generalized Additive Model and Random
Forest in the 3.5- and 14-days Sampling Period.

39



5. DISCUSSION

5.1. Main Findings in Relation to Objectives and Hypotheses
This study set out to evaluate the applicability of SPEARpesticides, alongside other

bioindicators, for reflecting pesticide impacts on macroinvertebrate communities in Swiss
streams, within the context of the NAWA framework. The results support the primary
hypothesis: elevated pesticide pressure, as quantified by risk quotients (RQs) and toxic
units (TUs), is associated with a measurable decline in sensitive macroinvertebrate taxa.
This effect, most clearly captured by the SPEARpesticides index, demonstrates a negative
relationship between pesticide pressure and the bioindicator variability. These
relationships yield a range of R? from 0.1 to 0.3. The strength depends on the chemical
metric, sampling period, time window, and statistical modeling approach selected. These
results align with those of previous research that used SPEARpesticides to reflect pesticide
impacts across Europe (Beketov et al., 2013; Kuzmanovic et al., 2016; Liess et al., 2021;
Rasmussen et al., 2012), South America (Hunt et al., 2017) and East Africa (Ganatra et
al., 2021).

RQs, being based on Environmental Quality Criteria designed to protect a broad range of
organisms (Peterson, 2006; von der Ohe et al., 2008) may be preferable when regulatory
thresholds and linear models are the focus. In contrast, TUs are calculated using effect
concentrations for the aquatic species under analysis, often invertebrates such as D.
magna, making them more ecologically targeted, providing insights under more flexible,
data-driven modeling (Ginebreda et al., 2014; von der Ohe & de Zwart, 2013). This
specificity allowed TU-EC to capture more nuanced, non-linear relationships in flexible
models such as GAMs in our 3.5-days sampling period. However, we cannot neglect that
in many cases the non-linear behavior captured by the GAMs was due to an isolated higher
pesticide pressure value, while in the area where the most of our observations are
aggregated, a clear negative relationship, characterized by a nearly linear trend, is evident.
A significant aspect of our findings is the considerable uncertainty observed in the
regression analyses, especially at the extremes of the exposure gradient. Isolated, rare

high-exposure events increased variability in model predictions and reduced confidence in
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these regions. This pattern is likely the result of factors such as data aggregation or the
use of composite samples. The necessity for broader data coverage across the exposure
gradient, sensitivity analyses (e.g., excluding rare events), and cautious interpretation is
underscored by this pattern. These uncertainty levels may also be caused by unseen
factors in our approach. Therefore, continued methodological refinement is crucial to better
quantifying and communicating confidence in ecological risk assessments (Moe et al.,
2022).

With respect to the outcomes based on sampling periods, we obtained more information
from the 3.5-days samples, reflecting our acute approach, with different strengths of the
negative relationship that spanned an R? from 0.1 to 0.3. Conversely, within the 14-day
sampling period, consistent with our chronic approach, the slopes and R? ranged from 0.1
to 0.2, indicative of a more stable negative relationship. This is presumably due to the
prolonged composite samples, which tend to smooth out exposure events, resulting in a
conservative value of the chemical metric (Peterson, 2006; Spycher et al., 2018).
Ultimately, this proves insufficient for the SPEARpesticides index, underscoring a limitation
in the bioindicator sensitivity. Nevertheless, we cannot neglect the distinction between the
3.5-day and 14-day sampling periods. The primary objective of these samples differs, as
the 3.5-day samples are collected in locations where the exposure to pesticides is
presumed to occur, while the 14-day samples are part of a more comprehensive
framework. This distinction could be the reason why the chemical metrics derived from the
3.5-day samples are more prone to predict the SPEARpesticides results.

In accordance with our second specific objective, we hypothesized that the smoother value
of the 14-days sample would be comparable to the other environmental parameters and
that including them would improve the model's power. This was confirmed by the inclusion
of land use and hydrological variables, which were observed to be relevant predictors. This
observation aligns with the findings of Rico et al. (2016), who reported a similar relationship
between a bioindicator and a chemical metric in a multistressor scenario. Indeed, the PCA
analysis showed that the "agricultural pressure gradient" was an indicator of the

effectiveness of the chemical metrics derived from the chronic approach. The link between
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chemical metrics and the proportion of agricultural land use became clearer during the 3.5-
day sampling period than during the 14-day sampling period.

Finally, both the regression analysis and the PCA exhibited a consensus, albeit at varying
levels, in reflecting the temporal variations across designated time-windows. The higher
explanatory power of the relationship and the robust association of the agricultural
pressure gradient were consistently observed to be dependent on the aggregation of
samples that were more proximate to the macroinvertebrate monitoring. This finding

served to conclude the third objective of our research approach.

5.2. Interpretation of Bioindicator Responses

A key characteristic of this study is its approach to calculating chemical metrics. Only
substances classified as insecticides, herbicides, and fungicides were considered, and for
risk quotients, quality criteria were filtered to include only those labeled as acutely or
chronically toxic for invertebrates. For toxic units, the ecotoxicological endpoints were
selected to be as close as possible to macroinvertebrate sensitivity, using D. magna as a
reference organism (von der Ohe & de Zwart, 2013; Wei et al., 2022). Although this filtering
may potentially penalize the possible relationship with more bioindicators, it was necessary
given our main goal. Studies have shown that filtering specific groups of pesticides
enhances the relationship between chemical metrics and bioindicators (Ganatra et al.,
2021; Hunt et al., 2017; Rasmussen et al., 2012).

SPEARpesticides’ performance compared to the other bioindicators can be attributed to
its trait-based design, which explicitly links community composition to pesticide sensitivity,
generation time, dispersal ability, and exposure probability as noted in (Knillmann et al.,
2018; Liess et al., 2021). This specificity allowed SPEARpesticides to detect changes in
community structure even when other environmental stressors are present, a property that
has been observed on multiple occasions under event-driven chemical sampling (Liess et
al., 2021; Rasmussen et al., 2013; Schafer et al., 2011). This distinction serves to highlight
the importance of our methodical temporal alignment in detecting relationships. It is also

important to acknowledge that the capacity of SPEARpesticides to reflect pesticide impacts
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is contingent not solely on its sensitivity, but also on the resolution and specificity of the

chemical metrics employed (Leyva-Morales et al., 2024).

5.3. Integration of Environmental Parameters in Regression Models

Integrating environmental parameters alongside chemical metrics, supported by their
conceptualization and previous analyses, was important to explaining the variability in the
responses of macroinvertebrate communities to pesticide pressure, without making the
model proposal overly complex and acknowledging the potential impact of external factors
(Chollet Ramampiandra et al., 2023; Schuwirth et al., 2015).

In the 3.5-days sampling period, the combination of TU-EC(mix, median), proportion of
agricultural land use, and flow velocity consistently yielded the most robust and
interpretable models for SPEARpesticides. This outcome highlights the ecological reality
that both static landscape attributes and dynamic stressors jointly shape biological
communities in agricultural streams. The negative, nearly linear effect of proportion of
agricultural land use on SPEARpesticides aligns with trait-based theory and empirical
evidence, reinforcing the persistent role of land use as a stressor (Liess, 2023). The
inclusion of TU-EC(mix, median) was further justified by its specificity, directly quantifying
invertebrate-toxic pressure from pesticides, and capturing dynamic exposure events that
static variables cannot (de Castro-Catala et al., 2016; Leyva-Morales et al., 2024; Svara
et al., 2021). Flow velocity, although not always exhibiting a strong directional effect,
contributed to model performance by accounting for hydrological variability that can
influence both pesticide transport and habitat suitability for macroinvertebrates (Burdon et
al., 2019; Rico et al., 2016).

In the 14-days sampling period, the prominent chemical metric shifted from TUs to RQs.
CRQ(mix, max) emerged as the most informative chemical predictor, and the relevance of
environmental parameters, particularly flow velocity, and proportion of agricultural and
urban land use, became more prominent than the chemical metric, as it was observed in
other studies (Rasmussen et al., 2013; Rico et al., 2016). The 14-days sampling period,
apparently smoothing short-term peaks in pesticide concentrations (Ashauer et al., 2020;

Backhaus & Faust, 2012), reduced the detectability of acute exposure events and make
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this effect comparable to the influence of spatial and land-use gradients. In this context,
the use of a broader, more conservative chemical metric (CRQ) and its maximum value
within the sampling period proved more effective for capturing the effect of pesticides on
SPEARpesticides.

The integration of environmental parameters into regression models reduced unexplained
variance and highlighted the multi-stressor reality of stream ecosystems, where land use,
hydrology, and chemical exposure interact to determine biological outcomes (Erasmus et
al., 2021; Liess et al., 2016; Villeneuve et al., 2018). As alternative models we evaluated
our best model structures without the chemical metric as a predictor leading to reduction
in the explanatory power and, in the 3.5 days sampling period, potential overfitting of the
environmental parameters.

These findings underscore a methodological insight for our datasets: neither chemical
metrics nor environmental parameters alone can fully explain variability in bioindicator
responses. Instead, integrated models that account for both types of predictors are
necessary to capture the complexity of ecological responses in real-world, multi-stressor
environments (Burdon et al., 2019; Hel et al., 2024; Rasmussen et al., 2012; Rico et al.,
2016; Villeneuve et al., 2018). The approach taken here, selecting, and temporal aligning
chemical metrics, integrating key environmental parameters, and adapting model structure
to the characteristics of each sampling period, offers a reasonable framework for ecological
assessment and improving the diagnostic power of both monitoring programs performed
under the NAWA framework.

5.4. Modeling Approaches and Interpretation

The modeling strategy adopted in this study was intentionally flexible, reflecting the
complexity and heterogeneity of the data as well as the need to maximize ecological
interpretability. The assessment of transition from linear models (LM/LM) to generalized
additive models (GAM/GAMM) was driven by diagnostic evidence, outlier sensitivity and
modest explanatory power. While using median-based chemical metrics as predictors
provided some robustness against outliers, linear models frequently failed to capture the

nuanced relationships between pesticide exposure and bioindicator responses, as
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indicated by residual diagnostics and limited explanatory power (Gotelli & Ellison, 2013;
QCBS, 2024).

The use of GAMs, specifically for the 3.5-days sampling period, allowed for a more data-
driven and adaptive exploration of these relationships, revealing that significant and
ecologically interpretable associations for SPEARpesticides were more consistently
detected with this approach (Moe et al., 2025). In the case of the 14-days sampling period,
it was proven that implementing GAMMs did not improve the overall model performance.
This is likely because the chemical metric in those datasets was not strong enough to
express the variability of the bioindicator. This shows that SPEARpesticides is not sensitive
enough for this type of sample. Nevertheless, all of the selected statistical modeling
approaches consistently reflected the negative trend between pesticide pressure and
sensitive macroinvertebrate taxa. However, the emergence of different metrics as primary
predictors highlights the importance of aligning model structure and metric selection with
the ecological question and data characteristics.

Visual inspection of model fits and residuals was crucial for ensuring ecological plausibility,
particularly in avoiding over-interpretation of statistically significant but biologically spurious
patterns, an issue occasionally observed for broader indices such as Gl. This emphasis
on visual and ecological validation, alongside statistical criteria, aligns with best practices
in ecological modeling and risk assessment (Moe et al., 2025; QCBS, 2024).

Despite the advances provided by GAMSs, the overall explanatory power of chemical
metrics remained moderate, with a maximum of approximately 30% of SPEARpesticides’
variability explained in the best 3.5-days sampling period model. In this case, the
implementation of environmental parameters proved to be of critical importance. This
implementation led to a significant enhancement in the explanatory power of the model,
with the proportion of variability explained rising to 60%. Additionally, it contributed to a
reduction in the uncertainty surrounding the partial effect of the chemical metric. This
reduction in uncertainty enabled us to articulate with an improved degree of confidence the
number of units of the bioindicator that are diminished by an increase of one standard

deviation in the chemical metric. This was permitted in view of the additive character of the
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model structure that was defined, wherein the baseline levels of the other predictors and
the intercept of each model are to be acknowledged to evaluate the predictions (QCBS,
2024). This interpretation demonstrates the limitations of sample size, but also the
opportunities for improving the model to take potential actions regarding the overall
problem addressed by the thesis. A simple exercise to move one standard deviation in the
chemical metric to determine the decrease of SPEARpesticide response demonstrates
that "pesticide pressure" is indeed the variable to take further immediate actions, followed
by land use, to improve the ecological status of streams, as expressed by
SPEARpesticides through sensitive taxa.

The levels of explained variability before and after the implementation of environmental
variables are comparable to those reported in similar studies (Hunt et al., 2017; Liess et
al., 2021), but it is important to recognize that achieving these results required substantial
data harmonization, metric refinement, and flexible modeling, reflecting the challenges of
integrating datasets with differing temporal, spatial, and methodological characteristics.
The need for such analytical effort highlights the advantage of monitoring programs that
coordinate chemical and biological sampling in a temporally consistent manner, as this
alignment can enhance the detectability of stressor—response relationships and reduce the
need for post hoc data manipulation (Spycher et al., 2018).

In summary, the modeling approaches employed here demonstrate the value of flexibility
and ecological reasoning in uncovering relationships between pesticide exposure and
macroinvertebrate communities, while also illustrating the inherent limitations imposed by

data structure and sampling design.

5.5. Cross-Validation and Model Robustness

The application of cross-validation (CV) and Random Forest (RF) benchmarking provided
a transparent assessment of model robustness and generalizability, complementing the
inferential focus of this study. While the primary goal was not to maximize predictive
accuracy, CV results highlighted the strengths and limitations of the selected modeling

approaches under the constraints of the datasets.
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For the 3.5-days sampling period, both GAM and RF models demonstrated reasonable
performance, particularly as the number of observations increased. The inclusion of the
chemical metric TU-EC(mix, median) was vital for maintaining model stability and
explanatory power; its omission led to reduced performance and instability. Notably, RF
models often outperformed parametric models in predictive metrics, suggesting the
presence of non-linear or interactive relationships that flexible, non-parametric approaches
can better accommodate (Leigh & Datry, 2017). However, the overall consistency between
GAM and RF results supports the adequacy of the selected GAM structure for inferential
purposes, especially when both chemical and environmental parameters were included.
In the 14-days sampling period, RF models outperformed linear mixed models (LMM) and
linear models (LM), with RF achieving R? values nearly double those of parametric
approaches. The frequent singularity of LMMs during CV underscored the challenges
posed by limited sample size, data structure, and the inclusion of random effects. Attempts
to model interactions or simplify the structure did not yield improvements, indicating that
more complex relationships may exist but cannot be robustly captured with the current
dataset (Chollet Ramampiandra et al., 2023; Leigh & Datry, 2017).

Overall, the CV and RF benchmarking not only test the inferential findings of this thesis but
also revealed the limitations inherent in the current dataset, such as small sample sizes,
lack of pristine reference sites, unbalanced monitoring across streams and years, and the
use of static abiotic variables. These insights point to the need for future studies to employ
larger, more diverse datasets and to consider different alternatives of regression models

to better capture the complexity of ecological relationships in stream ecosystems.

5.6. Time Windows — Temporal Integration Effects

The time windows, initially conceptualized to optimize the aggregation of chemical samples
for explaining bioindicator variability, emerged as a critical factor influencing the strength
and nature of the relationships between pesticide exposure and macroinvertebrate
bioindicators.

In the 3.5-days sampling period the stronger and more robust negative association

between chemical metrics and SPEARpesticides were found in the first time-windows
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(from 1-week to 2-months). This effect was further enhanced by the inclusion of
environmental parameters, which allowed for a more consistent explanation of the
variability in bioindicator responses across the exposure gradient, as seen in the partial
effect plots. Conversely, in the 14-days sampling period, chemical metrics alone were
insufficient to consistently explain declines in SPEARpesticides beyond one standard
deviation of exposure. The addition of more samples and abiotic variables only modestly
reduced model uncertainty and did not substantially improve predictive power within the
observed data range. This pattern aligns with previous studies (Ashauer et al., 2020;
Backhaus & Faust, 2012; Spycher et al., 2018), which have highlighted the limitations of
chronic, composite sampling in capturing the ecological relevance of short-term exposure
peaks.

The temporal aggregation in the 14-day composites evens out the concentration over
episodic toxicity events. This affects the importance of spatial and land-use variables as
environmental gradients and shifts the explanatory power toward broader, more
conservative chemical metrics, such as CRQ(mix, max). While this approach can improve
model stability with a similar R? across time windows, it may also dilute the direct attribution
of macroinvertebrate responses to specific pesticide events. This demonstrates the
reduced sensitivity of indices like SPEARpesticides for these types of samples.

In the CV assessment, both GAM and RF provided acceptable explanatory power and
consistency in corroborating the findings, while LMM proved less effective. These results
suggest that the observed improvements may be driven by the chemical exposure signal
inherent to the sampling period to which SPEARpesticides is sensitive, rather than by the
statistical model chosen, the amount of data, or how the data are integrated. It is important
to note that the 3.5- and 14-days sampling periods differ in more than just temporal
resolution. They also differ in the substances analyzed and their main sampling objective,
as discussed in previous sections.

These findings highlight a fundamental trade-off in ecological monitoring design: acute,
higher-resolution sampling (3.5-days in comparison to the 14-days sample) is more

sensitive to episodic events but may be more susceptible to noise and temporal
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mismatches, while chronic, lower-resolution sampling offers stability at the cost of reduced

sensitivity to acute impacts.

5.7. Implications for Monitoring, Management, and Future Research

First, the demonstrated specificity of the SPEARpesticides, especially when paired with
carefully selected chemical metrics and key environmental parameters, support its
continued use and further development as a diagnostic tool for pesticide impact
assessment in Swiss streams. The “Gl index” and “EPT richness” also showed potential
as a supplementary indicator for pesticide-related pressure, though its broader ecological
scope makes it less specific to this stress when using the chemical measurement from the
composite samples.

These results emphasize the necessity of integrating chemical and biological data streams
into monitoring programs. Temporal alignment between chemical and biological sampling
is particularly important to maximize the detectability of pesticide effects, especially for
acute exposure events.

The study also highlights the value of including key environmental parameters, such as
proportion of agricultural and urban land use and flow velocity, in both routine monitoring
and ecological assessment frameworks. These variables not only improved model
performance but also provided crucial ecological context for interpreting bioindicator
responses. The consistent influence of proportion of agricultural land use across scales
suggests that land management practices remain a central approach for mitigating
pesticide impacts in agricultural catchments (llg & Alther, 2024; Khaliq et al., 2024; Nguyen
etal., 2023).

Despite these advances, several limitations must be acknowledged. The reliance on
composite chemical samples, the absence of pristine reference sites, static abiotic
variables, and unbalanced monitoring designs all constrained the explanatory power and
generalizability of the models. Once a sensitivity analysis of the “rare events” that
generated that rise in the curves is performed we might be able to argue better where the
main monitoring efforts should be addressed to clarify such specific relationship

“SPEARpesticides and chemical metrics®, since the present analysis showed that the
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closer the chemical monitoring to the biological monitoring is better and the aggregation of
more data is not necessarily beneficial for the relationship. For example, event-driven,
continuous high-resolution measurements, increasing sampling size and spatial coverage
could provide a better alternative capturing short-term fluctuation episodes pollution events
that current information from our databases may miss. However, the cost could be much
higher for only one purpose (Spycher et al., 2018). Therefore, long-term monitoring
programs that are well-designed and capable of assessing multiple stressors, including
those not initially targeted, are crucial for a comprehensive understanding of ecosystem
health. Purpose-designed monitoring campaigns that harmonize chemical and biological
sampling in time and space, and that are flexible enough to address both known and
unknown stressors, will be especially valuable for disentangling the complex drivers of
macroinvertebrate community change.

On the other hand, as research on diverse modes of action expands, these may not be
fully captured in the analysis for the Species At Risk used to determine the
SPEARpesticides. Greater attention to taxonomic resolution is also warranted, as this
underpins index calculations and ecological interpretation. While this study took a broad
approach, future work would benefit from more detailed taxonomic and contaminant-

specific analyses to better understand stressor impacts on aquatic communities.

6. CONCLUSION

This study quantitatively evaluated the relationship between chemical metrics and the
SPEARpesticides index, alongside other bioindicators, to evaluate how effectively these
tools reflect pesticide impacts on macroinvertebrate communities in Swiss streams within
the NAWA framework.

First, the results confirm that pesticide exposure, as measured by both RQs and TUs, is
associated with declines in sensitive macroinvertebrate taxa, most clearly captured by the
SPEARpesticides index. Both RQs and TUs demonstrated negative associations with
bioindicator values, but their relative performance depended on the modeling approach,
reaching 28% and 18% of the variability explained in the 3.5- and 14-days sampling

periods. RQs, being based on broad environmental quality criteria, performed well in linear
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models and provided a conservative, regulatory-oriented signal. In contrast, TUs, derived
from effect concentrations for sensitive aquatic species, proved more nuanced and
ecologically targeted, especially when flexible, non-linear models were employed.
Second, the integration of environmental parameters, particularly agricultural land use and
flow velocity, improved the explanatory power of models, supporting the hypothesis that
harmonized, multi-factor approaches more effectively capture the ecological impacts of
pesticide mixtures than chemical metrics alone. The inclusion of other abiotic factors
allowed for a broader and more consistent explanation of variance across the exposure
gradient reaching around 60% and 36% of the variability explained in the 3.5- and 14-days
sampling periods respectively, underscoring the value of integrated monitoring strategies.
Third, the comparative analysis of acute (3.5-days) and chronic (14-days) sampling periods
and the time windows used for chemical samples aggregation revealed their critical
influence in the sensitivity and stability of bioindicator responses. The 3.5-days samples
and the shorter time windows were more effective at detecting episodic pesticide events
and yielded stronger explanatory relationships, particularly for SPEARpesticides. In
contrast, longer, chronic sampling periods provided greater model stability but diluted
acute exposure signals, resulting in less sensitive bioindicator responses.

Despite these advances, a considerable amount of unexplained variance remained in all
models. This is attributable to inherent complexities in field conditions, measurement
limitations, the structure of composite samples, and the lack of pristine reference sites,
factors well recognized in ecological risk assessment. The presence of rare or extreme
events, particularly at the margins of the exposure gradient, further increased model
uncertainty and highlighted the need for expanded data coverage and targeted sensitivity
analyses.

In summary, the present study demonstrates that meticulous data processing, temporal
alignment, data integration, and careful selection of chemical metrics with bioindicators
enhance the diagnostic power of ecological risk assessments while using the Swiss
databases. The extant data demonstrate a robust and consistent negative relationship

between TU-EC(mix, median) and SPEARpesticides. This relationship is indicative of
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pesticide pressure on macroinvertebrate communities in Swiss streams. This is particularly
relevant when employing chemical samples that are closely aligned with the biological
monitoring, with the objective of reflecting specific episodes of pesticide exposure and
acknowledging the multistressor reality. The findings advocate for continued refinement of
monitoring programs, emphasizing methodological transparency, harmonization, and the
adoption of integrated, multi-factor approaches to manage pesticide risks in freshwater

ecosystems.
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Figure S 1. Correlogram Abiotic factors and Bioindicators (Chemical metrics represented by TUs and RQs (max, max) and (mix, median)) in both 3.5-days (A) and 14-days (B) sampling period across time windows.

Values within each cell represent Spearman’s p
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Estimate (with 95% CI)
A: Linear Mixed Models using YEAR as random effect. B: Linear Model.
A, B: Each estimate represents a model based on one chemical metric, one bioindicator, and one subset of data. Each chemical metric was used as an individual predictor against each bioindicator across time windows. Each chemical metric is log1p-transformed and scaled.
Facet columns represent the chemical metric family (Risk Quotient or Toxic Unit), facet rows show the aggregation approach (Mixture or Maximum), and the y-axis displays the statistical representation (Mean, Median, Maximum) of each chemical metric.
If an indicator, time window, or chemical metric interaction does not appear, it was not t least marginally significant (p < 0.1).

Figure S 2. Estimates (95% Cls) of chemical metrics used as predictors in (A) Linear Mixed Models (including “year” as random effect) and (B) Linear Models against bioindicators.
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Figure S 3. Residual vs. Fitted values and Cook’s distance plots for SPEARpesticides (response variable) and chemical metrics (predictors) in 1-week, 2-week, and 1-year
time windows for linear models in 3.5 days sampling period.
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Figure S 4. QQ and Scale-Location plots for GI, EPT, and SPEARpesticides (response variables) and chemical metrics (predictors) in 1-week, 2-week, and 1-year time windows for linear mixed models in 14 days
sampling period.
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The horizontal line at 0 indicates the lower limit of GI_VALUE values. Values below 0 are not plausible as Gl cannot be negative.
Model performance is summarized by R2, AIC (Akaike Information Criterion; lower values indicate better fit), EDF (effective degrees of freedom), and p-value (model significance).

Figure S 5. Comparison of Generalized Additive Models (blue) and Linear Models (red) fitted across different time windows using Gl as response variable. When the estimates or uncertainties for the bioindicator fall below
zero, it is considered an ecological implausible value.
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SPEAR vs Chemical metrics
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The horizontal line at 0 indicates the lower limit of SPEAR values. Values below 0 are not plausible as SPEAR cannot be negative.
Model performance is summarized by R2, AIC (Akaike Information Criterion; lower values indicate better fit), EDF (effective degrees of freedom), and p-value (model significance).

Figure S 6. Comparison of Generalized Additive Models (blue) and Linear Models (red) fitted across different time windows using SPEARpesticides as response variable. When the estimates or uncertainties for the
bioindicator fall below zero, it is considered an ecological implausible value.
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SPEAR vs Chemical metrics
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LMM (red dashed) and GAMM (blue) with model statistics
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The horizontal line at 0 indicates the lower limit of SPEAR values. Values below 0 are not plausible as SPEAR cannot be negative.
Model performance is summarized by R2, AIC (Akaike Information Criterion; lower values indicate better fit), EDF (effective degrees of freedom), and p-value (model significance).

Figure S 7. Comparison of Generalized Additive Mixed Models (blue) and Linear Mixed Models (red) fitted across different time windows using SPEARpesticides as the response variable.
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Figure S 8. Correlogram of abiotic factors at 3.5-days and 14-days sampling periods. For practicality, only the 1-year dataset was used for this representation, as correlation values and directions were similar across
time windows.

Xviii



Partial Effects of GAMs on SPEAR
SPEAR ~ s(TU_ECmix_median) for each time window
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Each facet row corresponds to a single GAM including the chemical metric.
Al predictors were scaled (mean = 0, SD = 1); the chemical metric was log1p-transformed and scaled.
Dashed zero line indicates baseline effect; curve shows bioindicator response change as predictor varies 1 SD.

Figure S 9. Partial effect of TU(mix, median) on SPEARpesticides across
selected time windows using GAMSs.

Partial Effects of GAMs on SPEAR

SPEAR ~ s(Agricultural area) + s(Flow velocity) for each time window
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Each facet row corresponds to a single GAM including the two predictors simultaneously.

Al predictors were scaled (mean = 0, SD = 1); the chemical metric was log1p-transformed and scaled.
Dashed zero line indicates baseline effect; curve shows bioindicator response change as predictor varies +1 SD.

Figure S 10. Partial effects of proportion of agricultural land use and flow velocity on SPEARpesticides across selected time
windows using GAMS.
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LMM Effects Across Time Windows

Model structures: All of them include CRQmix; max
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Mod2- SPEAR ~ Agricultural_area_frac + Flow_velocify + Urban_area_frac + (1]YEAR)

Mod2_1: SPEAR ~ Agricultural_area_frac + Avg_mod_discharge_m3_s + Urban_area_frac + (1|YEAR)
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Mod4: SPEAR ~ Agricultural_area_frac + (1|YEAR)
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Estimate (with 95% ClI)

Al predictors were scaled (mean = 0, SD = 1); the chemical metric was log1p-transformed and scaled.
Facet columns represent each proposed model, facet rows show each time window, and chemical metrics are represented by a triangle.
Akaike information criterion (AIC) and number of observations (n) are displayed for each subset of data and predictor, same values belong to either the same model or the same sub-set of data.

Figure S 11. Comparison of nine linear mixed models fitted to 14-days sampling data. Model 2 was selected for further analysis and is described in the main text. Marginal significance was set as p-value < 0.1.
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Partial Effects of LMM on SPEAR
Effects centered by subtracting the model intercept.
SPEAR ~ CRQmix_max+(1|YEAR) for each time window
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Figure S 12. Partial effects of CRQ(mix, max) on SPEARpesticides across
selected time windows using LMMs.

Partial Effects of LMM on SPEAR

Effects centered by subtracting the model intercept.
SPEAR ~ Agricultural area + Urban area + Flow velocity + (1YEAR) for each time window
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Figure S 13. Partial effects of agricultural and urban land proportion and flow velocity on SPEARpesticides across
selected time windows using LMMs.



Table S 1. Description of the abiotic variables included in the study (chemical metrics and environmental variables).

VARIABLE DESCRIPTION DIMENSION TYPE REFERENCES*
Risk Quotients (RQs) and Toxic Units (TUs) based on measured concentration of pesticides
. . (insecticides, herbicides, and fungicides), Swiss ecotoxicological quality standards and . (Burdon et al., 2019; Liess et
Chemical metrics . . . . . Chemical Dynamic
ecotoxicological endpoints, calculated as 'maximum' and 'mixture’ values, and represented by al., 2021)
(mean, median, max) per time window.
Catchment area Estimation of the total area (in m2) of water bodies (including lakes) upstream the sampling _ , (BAFU, 2020; Hutter et al.,
_ Hydrological Static
(m2) point. 2019; lig & Alther, 2024)
Average discharge . . . . . . (BAFU, 2020; Burdon et al.,
(mils) Annual mean modelled discharge (in m3/s) for the watercourse 'Mittlerer modellierter Abfluss'. Hydrological Static 2016)
md/s
Flow velocity (m/s) Modelled annual flow velocity (based on stream width and slope). Hydrological Static (Khalig et al., 2024)
Stream Waterbody size classification (small 'kleines', medium 'mittel', large 'grosses’) based on . .
. Hydrological Static (llg & Alther, 2024)
classification discharge.
Proportion of . . . i .
Proportion of the total land upstream categorized as human settlements 'Siedlungsflachen.’ Land Use Static
urban land use
Proportion of Proportion of the total land upstream categorized as forested areas, unproductive areas, artificial Land U - (Hutter et al., 2019; lig & Alther,
and Use atic
forest land use meadows, permanent meadows, permanent pastures, and summer grazing area. 2024; Khaliq et al., 2024; Liess
Proportion of Proportion of the total land upstream categorized as other fruit crops, fruit crops aggregated, etal., 2021)
agricultural land perennial berries, stone fruit, pears, apples, open area for production, vines, vineyards with Land Use Static
use natural biodiversity, and vines (region-specific biodiversity areas).
Classification of the stream based on water body morphology, ranging from 0 (natural or near . . (BAFU, 2022; Hutter et al.,
Ecomorphology o Morphological ~ Static
natural) to 12 (unnatural or artificial). 2019; lig & Alther, 2024)
Altitude (m.a.s.l.) Measure of the altitude (m.a.s.|.) at the sampling point. Spatial Static
Stream identity Stream name where macroinvertebrate and chemical sampling occurred. Spatial Static -
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Maximum summer

Modelled maximum morning summer stream temperature predicted from a linear model based

water temperature Spatial Static (Khaliq et al., 2024)
0) on catchment area and mean catchment elevation.
Season Season (spring or summer) when macroinvertebrate monitoring was performed. Temporal Static (llg & Alther, 2024)
Year Year of macroinvertebrate and chemical sampling. Temporal Static (Khaliq et al., 2024)
Average of daily Average of daily precipitation (mm) per site from 01-01-2017 to 31-12-2023, separated by
Temporal Dynamic -

precipitation (mm)

chemical sample

*References that have used the same or equivalent (based on our data availability) abiotic factors to be related to the bioindicators in previous studies
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Table S 2. Summary table of fitted GAMSs across time windows in the 3.5-days sampling period.

1_week 2 weeks 1_month 2_months 3_months 6_months 1_year
Model 1*: SPEARpesticides - TU_ECmix_median + Agriculture proportion+ Flow velocity*
AlC 222405 255.692  254.655 274.785 273.995 278.718  600.699
R2 0.617 0.594 0.609 0.578 0.587 0.705 0.441
VIF 1.026 1.027 1.03 1.036 1.04 1.034 1.024
EDF
edf_s(TU_ECmix_median) 1.786 1.752 2.164 1.873 1.868 1 2.535
edf_s(Agricultural_area_frac 1 1 1 1 1 4539 1
edf_s(Flow_velocity) 3.47 3.393 3.299 3.718 3.733 3.578 3.719
F-statistic
F_s(TU_ECmix_median) 1.87 3.198 3.49 2.919 3.226 2.948 4.848
F_s(Agricultural_area_frac) 22.613 23.248 23.895 24,981 24.832 11.436 14.68
F_s(Flow_velocity) 6.269 7.055 7.493 7.438 7.664 10.627 11.432
Significance (p_value)
p_s(TU_ECmix_median) 0.18 0.0557 0.0434 0.0702 0.0523 0.0948  0.00351
p_s(Agricultural_area_frac)  5.96E-05 3.34E-05 2.75E-05 1.74E-05 1.82E-05 0.000007 0.000245
p_s(Flow_velocity) 0.00108 0.000332 0.000246  0.000209  0.000159 9.6E-06 0
Model 2: SPEARpesticides - Agriculture proportion+ Flow velocity
AlC 211617 249352  249.352 278.686 278.686 279.87  589.698
R2 0.726 0.66 0.66 0.512 0.512 0.692 0.508
VIF 1.026 1.027 1.03 1.036 1.04 1.034 1.024
EDF
edf_s(Agricultural_area_frac 4.484 4.36 4.36 1 1 4.651 4.704
edf_s(Flow_velocity) 21772 2.889 2.889 3.583 3.583 3.384 3.986
F-statistic
F_s(Agricultural_area_frac) 9.287 9.14 9.14 24.386 24.386 12.235 9.28
F_s(Flow_velocity) 8.952 9.208 9.208 6.637 6.637 9.634 13.169
Significance (p_value)
p_s(Agricultural_area_frac)  0.000033 6.32E-05 6.32E-05 1.83E-05 1.83E-05 1.11E-06 2.35E-06
p_s(Flow_velocity) 0.000287 0.000153 0.000153  0.000462  0.000462  3.03E-05 0
Model 3: SPEARpesticides - ARQmix_median + Agriculture proportion+ Flow velocity
AlC 212585  250.513  252.353 276.88 279.798 282.104  590.491
R2 0.723 0.67 0.639 0.562 0.506 0.682 0.517
VIF 1.03 1.006 1.095 1127 1.159 1.132 1.005
EDF
edf_s(ARQmix_median) 1 2.515 1 2.207 1 1 2171
edf_s(Agricultural_area_frac 4.487 3.972 4.198 1 1 4.579 4.646
edf_s(Flow_velocity) 2.665 24 2.766 3.602 3.249 3.295 3.703
F-statistic
F_s(ARQmix_median) 1.106 2475 0.463 2.005 1.86 0.708 1.562
F_s(Agricultural_area_frac) 8.572 7.21 8.117 24.964 18.455 9.229 6.762
F_s(Flow_velocity) 8.951 8.514 7.741 6.642 5.267 9.082 12.775
Significance (p_value)
p_s(ARQmix_median) 0.303 0.0779 0.501 0.154 0.181 0.406 0.157
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p_s(Agricultural_area_frac)  6.36E-05 0.000518 0.000257  1.75E-05  0.000126  9.66E-06 1.88E-05
p_s(Flow_velocity) 0.000333 0.000999 0.000463  0.000361 0.00203  6.24E-05 0
Model 4: SPEARpesticides - TU_ECmix_median + Ecomorphology + Agriculture + Flow

AlC 223786  257.849  256.799 276.883 264.754 295.774  584.082
R2 0.623 0.586 0.599 0.564 0.685 0.571 0.561
VIF 1.08 1.085 1.088 1.069 1.07 1.072 1.035
EDF

edf_s(TU_ECmix_median) 1.736 1.863 2.153 1.847 1 1.509 1.536
edf_s(Ecomorphology_0_12) 1.709 1.252 1.227 1 1 1.654 2.241
edf_s(Agricultural_area_frac 1 1 1 1 4.301 1 4.584
edf_s(Flow_velocity) 3.481 3.287 3.265 3.665 3.683 3.969 4.082
F-statistic

F_s(TU_ECmix_median) 1.47 3.173 3.443 2.852 3.04 2.59 2.828
F_s(Ecomorphology_0_12) 0.658 0.067 0.057 0.011 0.52 0.522 1.928
F_s(Agricultural_area_frac) 23.251 21.11 22.536 23.686 10.514 22.676 7.263
F_s(Flow_velocity) 5.592 6.089 6.228 6.342 7.797 8.185 11.951
Significance (p_value)

p_s(TU_ECmix_median) 0.215 0.0579 0.0485 0.0755 0.0911 0.0631 0.0495
p_s(Ecomorphology_0_12) 0.572 0.845 0.917 0.917 0.476 0.623 0.143
p_s(Agricultural_area_frac) 6.02E-05 6.86E-05 4.78E-05 2.73E-05 7.12E-05 3.11E-05 3.63E-05
p_s(Flow_velocity) 0.00222 0.0017 0.000868  0.000811 0.00023  0.000105 0

*Model described in the thesis, selected as the best GAM.
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Link 1. Public Repository Structure and Access
The public repository associated with this thesis is available at: [GitHub: SPEAR PUBLIC
2025] - https://qgithub.com/AnthonyFow/SPEAR-THESIS-2025_Public

Repository structure:

— [inputs
o Abiotics_factors_41_streams_ds_prepared.rds
e metrics_3.5d_0_R12_pp_ds.rds
e metrics_14d_0_R12_pp_ds.rds
/scripts
e bio_chem_analysis.R
e datasets_creation.R
Joutput
/graphics
e (Main thesis plots + user-generated plots)
/docs
e (Detailed variable/column documentation)
/README.md

Important notes:

The datasets provided are entirely synthetic, randomly generated to closely mimic the
structure, column names, and approximate number of observations and streams of the
original data.

These datasets do NOT contain real observations and cannot be used to reproduce
the exact results of the thesis.

All code for statistical modeling and figure generation is provided and fully reproducible
with the synthetic data.

Full variable documentation is available in the /docs folder.

This repository contains the primary analysis script used for the thesis. It is
published to promote academic and scientific transparency.

For access to the original data or data preparation scripts, contact the thesis supervisor
(Dr. Anne Dietzel, VSA, anne.dietzel@vsa.ch).
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